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Abstract

Motivated by several stylized facts about skill premium and industrial dynamics, we
develop an endogenous growth model with infinite industries that are heterogeneous in
both capital intensities and skill requirement. We analytically characterize the optimal
investment in both physical capital and human capital, life-cycle dynamics of each of
the infinite industries and the dynamics of skill premium. We highlight that (1) optimal
human capital investment should be stage-dependent and synchronized with physical
capital investment, and should match the skill demand from the underlying industries;
(2) the aggregate skill premium and its dynamics are determined by the underlying
industrial structures and their dynamics at the disaggregated level. Our model provides
a structural microfoundation for the standard structureless macroeconomic frameworks
for the analysis of skill premium and human capital investment in the pertinent macro
literature.
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1. Introduction

Industries are heterogeneous in their demand for human capital and physical capital. Un-
derinvestment in human capital would result in low labor productivity and slow economic
growth, whereas overinvestment in human capital might lead to brain drain or even social
instability as no local jobs are available for “over-educated" people. Mismatch between skill
supply and skill demand caused by inappropriate human capital investment would be further
complicated by physical capital investment, not only because the two kinds of investment
compete for limited resources but also because workers of different skill levels exhibit dif-
ferent substitutability with phyical capital. In addition, investment in both tangible and
intangible capital feeds back on the evolution of the composition of underlying industries,
measured by value added shares or employment shares of different industries in an economy.
Therefore, it is important to understand how investment in human capital and physical
capital should be balanced in the context of industrial dynamics as an economy undergoes
structural change. Here, industrial dynamics refers to the time variation in output and em-
ployment of a given industry: when and how an industry enters a market, develops and
perhaps exits the market eventually (see Klepper, 1996, 1997; Hopenhayn 1991; Restuccia
and Rogerson, 2008). Structural change refers to the change in compositions of industries,
especially at the disaggregated level such as the 6-digit NAICS level within manufacturing.
Surprisingly, however, the answer to this question still remains unclear despite the enormous
progress in the pertinent growth literature, because the existing literature on the interac-
tion between human capital and physical capital mostly adopts a one-sector structureless
framework (see, for example, Lucas, 1988, Mankiw, Romer and Weil, 1992, Barro and Sala-
i-Martin, 1996, etc.). A case in point is the macroeconomic study on skill premium. There
are two main approaches in the literature. One is to emphasize complementarity between
physical capital and skilled labor and substitutability between physical capital and unskilled
labor at the aggregate level: physical capital accumulation raises the marginal productivity
of skilled labor but reduces the demand for unskilled labor, so skill premium widens with
capital accumulation (see, for example, Stokey, 1996; Krusell et al., 2000). The other ap-
proach is to highlight the role of skill-biased technological progress at the aggregate level:
marginal productivity of skilled labor increases faster than unskilled labor because the rate
of technological progress is higher in productions utilizing skilled labor, so skill premium
keeps widening with the biased technical change (see, for example, Acemoglu, 2003).
Whereas both approaches provide valuable insights and useful quantitative frameworks, there
are at least two important limitations. First, both approaches assume that the mathematical
form of the aggregate production function is exogenous and time-invariant, but the choice of
functional forms may affect quantitative results significantly. Moreover, the functional form
of the aggregate production function could be endogenously changing as the composition
of underlying industries may change over the course of economic development (Ju, Lin and
Wang, 2015). Second, both approaches attribute changes in skill premium entirely to the
quantitative changes in aggregate variables, and hence remain agnostic about whether and
how skill premium (and its dynamics) at the aggregate level may be affected by potential
structural changes. Recall that in growth models with endogenously different compositions
of goods or industries (see Stokey, 1989; Romer, 1990), human capital intensities are typically
assumed identical across goods/industries, which is counterfactual.1 Such models are neither

1Notable exceptions include Buera, Kaboski, Rogerson and Vizcaino (2021), where skill intensities are
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designed to nor able to distinguish, quantitatively or qualitatively, separate roles of a wide
array of industry-specific shocks or frictions in factor relocation across industries, because
all these micro-level structural differences are lumped together and treated as quantitative
differences in the aggregate skill-biased technology or some other aggregate variable.
In light of these dissatisfying features, we propose an alternative growth framework which
allows us to jointly explore skill premium, industrial dynamics, and optimal investment
on both human capital and physical capital simultaneously. Our framework deviates from
the standard assumptions that the aggregate production function has an exogenous and
time-invariant functional form and that the economy consists of only one sector or mutiple
symmetric sectors. Instead, industries are heterogeneous in physical capital to skilled labor
ratios in our model, and the aggregate production function is endogenously derived from
the industrial structures, which in turn are endogenously determined by the endowment
structure, namely, the proportions of different production factors. We focus our theoretical
analysis mainly on two tasks. One is to explicitly characterize how optimal human capital
investment and physical capital investment should be made when industrial structures may
change endogenously over time. The other task is to illustrate how the level and dynamics
of skill premium at the aggregate level is actually determined by the industrial structures
and industrial dynamics at the disaggregated level.
Our paper is modelwise closest to Ju, Lin and Wang (2015) (or JLW model thereafter), but
there are three key differences. (1) There are two production factors in the JLW model:
homogeneous labor and physical capital, whereas our model has three production factors:
skilled labor, unskilled labor, and physical capital. (2) There is no human capital investment
in the JLWmodel, whereas human capital investment is explicitly introduced into our model,
which enables us to examine skill premium and human capital investment in the context of
industrial dynamics. In fact, the JLW model is a special case of the current model when all
labor is skilled labor. (3) The JLW model fails to explain the empirical pattern of shakeout,
namely, the expansion period takes longer than the decline period in the life cycle of an
industry, which is documented in details and explored in the literature (see, for example,
Jovanovic and MacDald, 1994, Bertomeu, 2009, Klepper, 1996, 1997), but the current model
is able to explain this fact because the marginal product of skilled labor increases faster than
that of unskilled labor due to the capital-skill complementarity. Like the JLW model, the
driving force of structural change in this paper is changes in factor endowment, which is
different from the other mechanisms highlighted in the structural change literature such as
non-homothetic preferences (see Kongasmut, Rebelo and Xie, 2001; Boppart; 2014; Comin,
Lashkari, and Mestieri. 2021), unbalanced productivity growth (Ngai and Pissarides, 2007;
Acemoglu and Guerrieri, 2008; Buera, Kaboski, Rogerson and Vizcaino, 2021) or interna-
tional trade (Matsuyama, 2009; Uy, Yi and Zhang, 2013). Moreover, the driving force of
life-cycle industry dynamics in our model is physical capital and human capital investment
rather than technological innovation, so the mechanism is also different from the standard lit-
erature on industry dynamics (see Jovanovic and MacDald, 1994, Bertomeu, 2009, Klepper,
1996, 1997, Wang, 2008). The new mechanism proposed in this paper is more appealing to

asymmetric across sectors. However, they do not investigate determinants or dynamics of skill premium,
nor do they study endogenous human capital investment decisions or industrial dynamics. Mulligan and
Sala-i-Martin (1993) explore transitional dynamics in a two-sector endogenous growth model, but the two
sectors refer to physical capital sector and human capital sector instead of different industries that producing
different consumption goods. They do not investigate skill premium or life-cycle industry dynamics.
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developing countries, where the relevant choice is how to adopt the appropriate technologies
from an exisitng menu rather than invent new technologies (Basu and Weil, 2003; Lin and
Wang, 2019).
The rest of the paper is structured as follows. In section 2, we document six stylized facts
about skill premium, factor endowment, industrial heterogeneity, and industrial dynamics
by using both the US and cross-country disaggregate industry level data. Motivated by
these facts, we propose a multi-factor and multi-sector endogenous growth model to explain
these facts simultaneously. In our model, industries are asymmetric in capital intensity and
skill requirement. The composition of industries are endogenously determined by the factor
endowment structure, namely the composition of physical capital, skilled labor and unskilled
labor. We first show in a static model how a given structure of factor endowment determines
the optimal industrial structure, the aggregate production function, and all the factor prices
including skill premium (Section 3). Then we further develop a dynamic model, in which
both physical capital and human capital investments are endogenously determined. The
physical capital sector features investment-specific technological progress in an AK fashion,
which yields sustainable growth. Human capital investment transforms unskilled labor into
skilled labor, so the factor endowment structures also evolve endogenously. We analytically
characterize how changes in endowment structures drive the dynamic changes in industrial
compositions, life-cycle dynamic path of each underlying industry and the evolution of the
skill premium along the aggregate growth path (Section 4). In particular, we show how the
dynamic model could simultaneously explain all the stylized facts documented in Section 2.
To better understand the underlying mechanisms, we first develop a simple model which al-
lows for endogenous investment in physical capital but there is no human capital investment,
so the composition of skilled labor and unskilled labor remains time-invariant (Section 4.1).
Then we introduce endogenous decisions on human capital investment to the above setting,
which allows us to explore how to balance these two different types of investment (Section
4.2). We show that the optimal human capital investment should be congruent with the
demand for skills from the underlying industries, the composition of which varies endoge-
nously in response to the changes in factor endowment structures. Skill premium is shown
to change at the same frequency as the industrial compositions. After that, we further allow
for the existence of positive externality in human capital investment, as is often examined
in the literature, and explores its implications (Section 4.3). Section 5 concludes.

2. Stylized Facts

We document the following stylized facts about skill premium, factor endowments and in-
dustrial dynamics, which will be discussed in details in this section.

• Fact 0 (positive correlation): There exists a positive correlation between skill
premium and physical capital to skilled-labor ratio (or capital-skill ratio, hereafter) for
the aggregate manufacturing sector.

• Fact 1 (cross-industry heterogeneity): There exists tremendous cross-industry
heterogeneity in capital-skill ratios.
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• Fact 2 (hump-shaped dynamics): An industry typically exhibits a hump-shaped
life cycle: its value-added share (or employment share) first increases, reaches the peak,
and then declines.

• Fact 3 (timing fact): An industry with higher capital-skill ratio reaches its peak
later.

• Fact 4 (congruence fact): The further away an industry’s capital-skill ratio deviates
from the economy’s endowment structure (measured by the total capital-skill ratio),
the smaller value added share (and employment share) is the industry.

• Fact 5 (Asymmetric Duration fact): The rising period of an industry (in terms
of employment and/or value added) is longer than the declining period.

2.1 Evidence from US data

We use the NBER-CES Manufacturing Industry Data for the US. This data set adopts the
6-digit NAICS codes and covers 473 sub-industries within the manufacturing sector from
1958 to 2016. At this disaggregated level, the rank in terms of capital-skill ratio between
two industries is frequently reversed over time, which creates challenges when empirically
testing predictions from models that assume time-invariant (rank of) factor intensities for
industries. To address this data issue that has been a long-time headache for empirical
tests of the Hechscher-Ohin trade model, we follow Schott (2002) by redefining industries
according to their capital to skilled-labor ratios. We first rank all the 27,751 observations
consisting of 473 industries for 59 years (156 observations are dropped due to missing values
in employment) by the capital—skill ratios in an increasing order, and then equally divide
all these observations into 99 bins (newly-defined industries). Within each newly-defined
industry, there are 280 observations. By construction, the capital to skill ratio is lowest in
the first bin, called “industry 1”and highest in the last bin, or “industry 99”. Moreover, the
ranking of capital to skill ratio across the newly defined industries is time invariant.

Positive correlation between skill premium and capital skill ratio

Figure 1 plots skill premium against capital to skilled-labor ratio for the whole manufacturing
sector from 1958 to 2016. Different dots represent observations in different years. Here due
to lack of better measures of skilled labor and unskilled labor, we follow the literature by
taking production workers as unskilled labor and non-production workers as skilled labor
[[add relevant literature that also does this for the US manufacturing data]]. Skill premium
is measured by the wage ratio between skilled and unskilled workers. A positive correlation
between skill premium and the ratio of capital to skilled labor is discernible.2

[INSERT Figure 1: Positive correlation between skill premium and logarithm of capital to
skilled labor ratio]

2A more commonly used measure of skilled and unskilled labor is eduaction level of workers, which is not
available for the US manufacturing sector for the whole period of 1958-2016. However, this information is
available for the US manufacturing sector from 1995 to 2009 in the WOID manfuacturign database. The
positive correlation between skill premium and capital skilled labor ratio is even stronger. Refer to Figure
1A in the appendix.
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Figure 2 below is a scatter plot showing that the positive correlation between skill premium
and capital to skilled-labor ratio is robust using the WIOD Socio-Ecoomic Accounts (SEA)
manufacturing database for the US between 1995 and 2009.

[INSERT FIGURE 2 HERE]

Figure 3 shows that the logarithm of physical capital to skilled-labor ratio increases over the
period from 1958 to 2016.

[INSERT FIGURE 3 HERE]

Cross-industry Heterogeneity

There exists tremendous cross-industry heterogeneity in the capital to skilled-labor ratio
among the 99 newly-defined industries. Table 1 shows that, among all industries in 1958,
the highest capital—skilled labor ratio is 1638 US dollars per worker, which is 67 times larger
than the lowest one in the same year. In 2016, the highest capital to skilled-labor ratio is
still about 69 times higher than the lowest one. The standard deviation across industries is
about 285 in 1958, and monotonically increases in each decade, reaching 602 in 2016.3

[INSERT TABLE 1]

Hump-shaped Life Cycle Pattern and Timing Fact

Figure 4 plots the time series of the HP-filtered employment shares of three newly-defined
industries in the total manufacturing sector from 1958 to 2016.

[INSERT FIGURE 4 HERE]

It shows that the employment share decreases over time in the industry with the lowest
capital to skilled-labor ratio (industry 1), exhibits a hump shape in the industry with a
“middle”level of capital to skilled-labor ratio (industry 43), and increases over time in the
industry with the highest capital to skilled-labor ratio (industry 99). Similar patterns are also
observed when the employment share is replaced by the value-added share. It suggests that
each industry exhibits a hump-shaped life cycle pattern (Fact 2) and that more capital-skill
intensive industries reach their peaks later (Fact 3).
To establish Fact 2 and Fact 3 more rigorously, we run the following regression:

Yit = β0 + β1t+ β2t
2 + β3ki · t+ β4ki + β5Tit + β6Di + β7GDPGRt + εit, (1)

where Yit is the employment or value-added share of industry i in the total manufacturing
sector at year t; ki is the year-average of the capital to skilled-labor ratios of industry i, Tit
is the labor productivity of industry i at year t, respectively; Di is the industry dummy;
GDPGRt is the GDP growth rate; and εit is the error term. If the hump-shaped dynamic
pattern is statistically valid, one should expect the coeffi cient for the quadratic term, β2,
to be negative and significant. In addition, after controlling for the labor productivity and

3If we do the same exercises based on the 473 originally defined industries, the cross-industry heterogeneity
is even larger. See Table A1 in the Appendix.
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the industry fixed effect, we know from (1) that industry i reaches its peak at tmax
i ≡

−β1+β3ki
2β2

. That is, ∂Yit
∂t

> 0 if and only if t < tmax
i . If the timing fact is statistically valid, we

should expect −β2

β3
to be positive, or equivalently, β3 should be positive when β2 is negative.

Moreover, the peak time tmax
i must be positive when β1 is positive. Table 2 reports all

the (GLS and OLS) regression results, which all confirm the hump-shaped pattern and the
timing fact.

[INSERT TABLE 2]

Another way to establish the timing fact is to directly regress the peak time of a newly-
defined industry’s share (either employment share or value-added share) on its capital to
skilled-labor ratio. The results are reported in Table 3. Column (1) and column (3) show that
the peak time of an industry is positively correlated with its capital to skilled-labor ratio. For
comparison purpose, column (2) and column (4) show that more capital intensive industries
reach their peaks later, where capital intensity is measured by the capital expenditure share
(measured by one minus labor income share). It confirms the finding in Ju, Lin and Wang
(2015). It suggests that capital skill ratio and capital intensity are two alternative good
predictors of an industry’s peak time.

[INSERT Table 3: Industries with higher capital to skill ratio reach peaks later.]

Congruence fact

To further understand what determines the industrial structures and their dynamics, we run
the following regression:

Yit = β0 + β1

∣∣∣∣Kit/Lsit −Kt/Lst
Kt/Lst

∣∣∣∣+ β2 · productivityit + β3Di + εit, (2)

where Yit is the employment (or value added) share of newly defined industry i in the whole

manufacturing sector at year t.
∣∣∣Kit/Lsit−Kt/LstKt/Lst

∣∣∣ is the absolute value of a normalized differ-
ence between industry i’s capital to skilled-labor ratio and the aggregate capital to skilled-
labor ratio for the manufacturing sector at year t, productivityit is the labor productivity of
industry i at year t, Di is dummy for industry i. The results are reported in Table 4.

[INSERT TABLE 4]

Column (1) (or Column (2)) shows that β1 is negative and significant, indicating that the
employment (or value added) share of an industry is smaller if the capital to skilled-labor
ratio of the industry is less congruent with the endowment structure. We refer to this
finding as the congruence fact. Column (3) and Column (4) report the results when we use
the original NAICS industry classification. It shows that the results are robust. (what we
need more is the positive correlation between labor productivity and capital skill ratio across
industries, which is used to support an assumption in our model).
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Asymmetric Duration Fact

Now we document a new fact about industry life cycle, that is, the rising period of an
industry (in terms of employment and/or value added) is generally longer than the declining
period. We call it asymmetric duration fact.
To measure the duration of the rising and declining period of industry n, we first plot the HP-
filered time series of the industry’s employment, then we find the time when the employment
reaches the global maximum (denoted by tmax

n ). Next, we find the lowest possible horizontal
line of employment that has two intersections with the employment curve. Denote the
leftmost and rightmost intersection time by tbn and t

e
n, respectively. The duration of the

rising period is tmax
n − tbn and the duration of the decling period is ten − tmax

n . Ideally, when
the time series is long enough, tbn (t

e
n) would be the time point when industry n just enters

(exits) the market. However, data limitation makes it impossible to observe the whole life
span of every industry. Typically, the period from 1958 to 2016 only covers an incomplete
part of the life cycle of an industry. That is, ten − tbn is typically shorter than the whole
life span of industry n. Define N (θ) ≡ {n

∣∣ten − tbn ≥ θ}, where θ is a positive constant. So
N (θ) is the set of industries whose rising period plus declining period observed in the data
sample is at least θ. Obviously, the set N (θ) is smaller when the cutoff value θ increases.
We calculate the percentage of industries whose rising period is longer than the declining
period among all the industries in set N (θ), that is,

Pr(tmax
n − tbn > ten − tmax

n |n ∈ N (θ)) =
#{n ∈ N (θ)

∣∣tmax
n − tbn > ten − tmax

n }
#N (θ)

.

Table 5 reports the percentage values for both the newly defined 99 industries and the original
6-digit NAICS 373 industries with different cutoff value θ.

[INSERT TABLE 5]

It shows that the rising period is systematicaly longer than the declining period in most
industries, which we call asymmetric duration fact.

2.2 Evidence from cross-country data

We now turn to the evidence from the cross-country data. The WIOD Socio-Economic Ac-
counts (SEA) manufacturing data set is at the two-digit level and consists of 14 sectors from
1995 to 2009. In WIOD (SEA) skill type is defined on the basis of the level of educational
attainment. More specifically, the data set uses the 1997 International Standard Classifica-
tion of Education (ISCED) classification to define low, medium and high skilled labor. Here
we added up the medium skilled labor to high skilled labor, so the definition of two skill
types is given in Table 6.

[INSERT TABLE 6: definitions of skills]
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We replicate the same exercise to check all the five facts for other countries and we find that
all of them are still valid. To save space, we delegate all the details into the appendix.

This concludes the empirical part of the paper. Motivated by these stylized facts, we now
develop a theoretical model, which takes Fact 1 as exogenously given and endogenously
generates Facts 0, 2, 3, 4 and 5 simultaneously. We start with the static model, in which all
production factors are exogenously given.

3. Static Model

The model setting extends the model in Ju, Lin and Wang (2015) (JLW model thereafter)
by differentiating two different types of labor for the purpose of studying skill premium and
human capital investment. More concretely, the economy is inhabited by a continuum of
identical households with measure equal to one. Each household is endowed with capital
E, skilled labor Ls and unskilled labor Lu. The total labor (Ls + Lu) can be equivalently
interpreted as the total family size of each household with each family member endowed with
one unit of labor. The JLW model is a special case of this model when all workers are skilled
(Lu = 0). The production function of the final commodity is

X =
∞∑
n=0

λnxn, (3)

where xn denotes intermediate good produced by industry n, λ
n is the marginal productivity

of intermediate good xn in the final good production. We require λ > 1 and xn ≥ 0 for
any n = 0, 1, 2, 3, .... Only the final commodity X can be used for consumption. The utility
function is CRRA:

U(C) =
C1−σ − 1

1− σ , where σ ∈ (0, 1], (4)

where C denotes consumption per household.
All technologies exhibit constant returns to scale. Let Fn(E, ls, lu) denote the production
function for industry n ≥ 0, where E , ls and lu denote physical capital, skilled labor and
unskilled labor, respectively. Good 0 is produced with labor only, and we normalize the units
such that one unit of labor produces one unit of good 0. Moreover, skilled labor and unskilled
labor are perfectly substitutable with equal labor productivity when producing good 0. Thus
F0(E, ls, lu) = lu + ls. For each good n ≥ 1, there are two alternative ways of production
depending on whether physical capital is used: If capital is not used in production, one unit
of labor, skilled or unskilled, produces 1

bn
units of good n, where b > 1. If capital is used in

production, skilled labor is required because only skilled labor can operate the "machine",
in which case it requires one unit of skilled labor and an units of physical capital to produce
one unit of good n. In other words, capital and skilled labor are complementary. These
two alternative ways can be used simultaneously, so for n ≥ 1, Fn(E, ls, lu) is equal to the
following value:

Fn(E, ls, lu) = max
ls1,ls2
{ lu + ls1

bn
+ min{E

an
, ls2}}

subject to
ls1 + ls2 ≤ ls, ls1 ≥ 0, ls2 ≥ 0.
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It implies that

Fn(E, ls, lu) =

{
lu
bn

+ min{ E
an
, ls} = lu

bn
+ ls, if E ≥ anls

lu+ls+
(bn−1)
an

E

bn
if E < anls

.

It shows that the marginal product of skilled labor, when equipped with enough capital,
becomes strictly higher than that of unskilled labor or that of skilled labor without capital.
So capital not only substitutes unskilled labor but also substitutes "unequipped" skilled
labor.
To make the analysis non-trivial, we assume4

min{a− 1, b} > λ > 1. (5)

It implies that, without loss of generality, the industry production functions can be rewritten
as

xn = Fn(E, ls, lu) =

{
lu + ls, if n = 0

lu
bn

+ min{ E
an
, ls}, if n ≥ 1

. (6)

All technologies are freely available.

Let the final commodity X be the numeraire. Let r , ws and wu denote the rental price
of capital and wage rates for skilled and unskilled labor, respectively. All the markets are
perfectly competitive. All firms maximize their profits by taking all prices as given, and each
household maximizes her utility function (4) subject to the following budget constraint

C ≤ wuLu + wsLs + rE.

By resorting to the Second Welfare Theorem, we obtain the following proposition.
Proposition 1. Given factor endowment E,Lu and Ls, there exists a unique perfectly
competitive market equilibrium, in which industrial output {xn}∞n=0 and the final output X
are characterized in the following table:

[INSERT TABLE 7: Quantities in Static Equilibrium]

Table 7: Quantities in Static Equilibrium
0 ≤ E < aLs anLs ≤ E < an+1Ls for n ≥ 1

x0 = Lu + Ls − E
a

x0 = Lu
x1 = E

a
xn = Lsan+1−E

an+1−an
xn+1 = E−anLs

an+1−an
xj = 0,for ∀j 6= 0, 1 xj = 0,for ∀j 6= 0, n, n+ 1

X = Lu + Ls + λ−1
a
E X = Lu + λn(a−λ)

a−1
Ls + λn+1−λn

an+1−anE

4Observe that if λ ≤ 1, (3) , (5) and (6) imply that no equilibrium exists because a higher-indexed
intermediate good (larger n) is always strictly more desirable to produce than any lower-indexed intermediate
good as the former is more costly to produce but less productive in the final good production. a > λ is
imposed for the same reason. Similarly, no equilibrium exists if b < λ, because otherwise all unskilled labor
will be allocated to the highest-indexed intermediate good, which does not exist. When b = λ, indeterminacy
arises as unskilled can be allocated to produce any intermediate good in equilibrium and any industry could
exist.
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Proof. Refer to the appendix. Q.E.D

Observe that the active underlying industries are different when the capital to skilled-labor
ratios (endowment structures) are different. Industry 0 is always active and all unskilled
labor is employed in industry 0. The output of other active industries depends on E

Ls
. More

precisely, when E
Ls
∈ (an, an+1), for n ≥ 1, the only two other active industries are industry

n and industry n + 1, whose capital to skilled labor ratios are closest to the endowment
structure. When E

Ls
∈ (0, a), only industry 0 and industry 1 coexist, and capital to skilled

labor ratios of these two sectors are also closest to the endowment structure. These equilib-
rium results are consistent with Fact 4 (the congruence fact) documented in Section 2. The
results in Table 6 are graphically illustrated in the following diagram.

[INSERT FIGURE 5: Quantities in Static Equilibrium]

Observe that the output of industry 0 first decreases with E
Ls
and then remains constant when

all skilled labor is "absorbed away" from industry 0. For any n ≥ 1, output of industry n
increases with E

Ls
when E

Ls
∈ (an−1, an) and then decreases with E

Ls
when E

Ls
∈ (an, an+1),

which is consistent with Fact 2 (hump-shaped pattern) documented in Section 2. For each
n ≥ 1, industry n reaches its peak of output when E

Ls
= an, which means that higher-

indexed industries reach their peaks of output at higher levels of E
Ls
, consistent with Fact 3

(the timing fact).
Table 6 shows that the aggregate production function X(E,Lu, Ls) has endogenously differ-
ent functional forms, depending on the endowment structure E

Ls
. It is because endowment

structures determine the composition of underlying industries. This feature is different from
standard macro models, where the functional form of the aggregate production function is
exogenously given and also assumed to be time invariant.
Observe that r, ws and wu are equal to the marginal products of capital, skilled labor and
unskilled labor, respectively, so they can be directly derived from the endogenous aggregate
production function shown in Table 6. For instance, when anLs ≤ E < an+1Ls for any n ≥ 1,
the factor prices are, respectively, given by

r =
∂X

∂E
=
λn+1 − λn

an+1 − an ;ws =
∂X

∂Ls
=
λn(a− λ)

a− 1
;wu =

∂X

∂Lu
= 1.

Collorary Let pn denote the market price for good n, and θ denote the labor income
share in total GDP. All prices and factor shares are summarized in Table 8:

Table 8: Prices and Factor Income Shares in Static Equilibrium
0 ≤ E < aLs anLs ≤ E < an+1Ls for n ≥ 1

ws
wu

= 1 ws
wu

= λn(a−λ)
a−1

r
ws

= λ−1
a

r
ws

= λ−1
an(a−λ)

p0 = wu = 1 p0 = wu = 1
p1 = λ pn = λn

pn+1 = λn+1

θ = Lu+Ls
Lu+Ls+

λ−1
a
E

θ =
Lu+

λn(a−λ)
a−1

Ls

Lu+
λn(a−λ)
a−1

Ls+
λn+1−λn
an+1−an E
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It shows that skill premium ws
wu
is positively correlated with E

Ls
because both are weakly

increasing in n. It is qualitatively consistent with Fact 0 documented earlier. More precisely,
skill premium remains constant when the set of active industries remains unchanged and
it exhibits a discountinous upward jump when a new (with a higher capital-skill ratio)
industry first appears. After that, ws

wu
remains constant again as E

Ls
increases, until an even

newer industry first appears, at which point ws
wu
exhibits a positive jump. Although the factor

income share is not the focus of our paper, but our model implies that labor income share
in GDP fluctuates endogenously as capital increases. More specifically, as E increases, the
labor income share strictly declines when the active industries do not change, and then the
labor income share discontinuously jumps up when a new industry first becomes active, and
then the labor income share strictly decreases until a new industry first appears, at which
point the labor income share jumps up again, so on and so forth. The decreasing part is
due to the fact that all factor prices remain constant whereas GDP increases with E. The
jump is due to the fact that skilled wage ws has a discontinuous upward jump when a new
industry first appears. As n→∞, θ converges to the interval ( a−λ

(a−1)λ
, a−λ
a−1

). Similarly, we can
conduct comparative static analysis with respect to Ls instead of E. Obviously, θ increases
with Ls when the active industries do not change, and then it jumps down discontinuously
when a new industry first appears.
Next, we extend the static model into a dynamic one by allowing production factors to
change endogenously over time.

4. Dynamic Model

The dynamic model consists of three parts. In Part A, we study the case in which physical
capital changes endogenously but there is no human capital investment, in other words, the
amount of skilled labor and unskilled labor is exogenous and time-invariant. In Part B, we
further allow for endogenous human capital investment, which transforms unskilled labor into
skilled labor, and we explore the interaction between endogenous physical capital investment
and human capital investment in determining industrial dynamics and skill premium. In
Part C, we further generalize the model in Part B by allowing for the existence of positive
externalities in human capital investment.

Part A: No Human Capital Investment

In this part, we let capital stock K grow endogenously but keep Ls and Lu fixed over time.
Time is continuous and households are infinitely lived. Like in the JLW model, there are
two sectors. One sector produces capital goods, which cannot be consumed directly. More
specifically, one unit of capital inherited from the past produces ξ units of new working
capital, where parameter ξ captures the investment-specific technological progress. The other
sector produces the final commodity and all the intermediate goods. The final commodity
is for consumption and is not storable. This sector is characterized in the static model in
Section 3. To produce consumption good C(t) at time point t, it requires E(C(t)) physical
capital, where function E(·) is obtained by solving the inverse function from the bottom row

12



in Table 7. More specifically,

E(C) =


0, C = Lu + Ls

E0,1(C), if Lu + Ls < C < λLs + Lu
E0;n(C), if C = λnLs + Lu, for n ≥ 1

E0,n,n+1(C), if λnLs + Lu < C < λn+1Ls + Lu for n ≥ 1

, (7)

where

E0,1(C) ≡ a

λ− 1
(C − Lu − Ls) ,

E0;n(C) ≡ anLs, for n ≥ 1,

E0,n,n+1(C) ≡ an+1 − an

λn+1 − λn
[
C − Lu −

λn(a− λ)

a− 1
Ls

]
, for n ≥ 1.

By the Second Welfare Theorem, we can characterize the decentralized market equilibrium
by solving the following artificial social planner problem:

max
C(t)

∫ ∞
0

C(t)1−σ − 1

1− σ e−ρtdt, where σ ∈ (0, 1),

subject to
·
K = ξK − δ · E(C(t)), (8)

where ρ is the time discount rate, δ is the depreciation rate, E(C(t)) is given by (7), and
K(0) = K0 is given. (8) states that the newly produced working capital net of the depreciated
capital in the production of the consumption good is used for capital accumulation. Let tbn
and ten denote, respectively, the first and the last time points when output of good n reaches
the highest level for n ≥ 1. Let te0 denote the final time point when only good 0 is produced.
To ensure positive growth and exclude explosive growth, we assume 0 < ξ − ρ < σξ. The
optimization problem can be rewritten as

max
C(t)

∫ te0

0

C(t)1−σ − 1

1− σ e−ρtdt+
∞∑
n=0

∫ tbn+1

ten

C(t)1−σ − 1

1− σ e−ρtdt+
∞∑
n=0

∫ ten+1

tbn+1

C(t)1−σ − 1

1− σ e−ρtdt

subject to

·
K =


ξK when 0 ≤ t ≤ te0

ξK − δE0,1(C), when te0 ≤ t ≤ tb1
ξK − δE0;1(C), when tb1 ≤ t ≤ te1

ξK − δE0,n,n+1(C), when ten ≤ t ≤ tbn+1, for n ≥ 1
ξK − δE0,n+1(C) when tbn+1 ≤ t ≤ ten+1, for n ≥ 1

,

K0 is given.

Following the Kamien and Schwartz (1991), we could solve this Hamiltonian dynamic sys-
tem with endogenously switching state equations. The reason why the state equations are
switching is that the underlying industrial structures are different for different output level
of consumption goods.
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Proposition 2. Suppose K0 is suffi ciently small. In equilibrium consumption changes by
alternating between a stagnation period and a growth period. More pricisely, we have:

C(t) =


Lu + Ls, when 0 ≤ t ≤ te0

(Lu + Ls)e
gC(t−te0), when te0 ≤ t ≤ tb1

Lu + λLs, when tb1 ≤ t ≤ te1
(Lu + λnLs)e

gC(t−ten), when ten ≤ t ≤ tbn+1, for n ≥ 1
Lu + λn+1Ls when tbn+1 ≤ t ≤ ten+1, for n ≥ 1

,

where gC = ξ−ρ
σ
.

Proof. See the appendix.
The following graph plots the equilibrium time path of consumption.

[insert new figure 6]

As we can see, initially no capital is used for producing consumption goods because capital
is too scarce and expensive, so all capital is used for cumulation in the capital goods sector
till time te0. After that, good 0 and good 1 are simultaneously produced and some capital
is used for producing consumption goods because capital becomes cheap enough to be used
for consumption goods, aggregate consumption grows at a constant rate gC = ξ−ρ

σ
, which is

the standard Euler equation, till time tb1 . During this growth period (te0, t
b
1], the rental price

of capital relative to consumption good is equal to λ−1
a

(= ∂X
∂E
, where X = Lu + Ls + λ−1

a
E)

according to Table 7, and relative factor price is r
ws

= λ−1
a
(from Table 8) remains unchanged

over time. Starting from tb1, only good 1 is produced and consumption remains constant
at level Lu + λLs till point te1, and capital used for consumption goods remains constant
because capital is too scarce and hence too expensive to support the production of good 2,
which is more capital intensive. Notice that at time tb1, the rental price of capital relative
to consumption good is equal to λ−1

a
but at time te1 the rental price of capital relative to

consumption good is equal to λ2−λ
a2−a (= ∂X

∂E
,where X = Lu + λ(a−λ)

a−1
Ls + λ2−λ

a2−aE). (5) implies

that λ2−λ
a2−a <

λ−1
a
, so capital has to be further accumulated in the capital goods sector during

this period until it is abundant enough to engage the more capital-intensive technology
(good 2) in consumption production. Observe that relative factor price r

ws
= λ−1

a
at tb1

and r
ws

= λ−1
a(a−λ)

at te1 based on Table 8. The discontinuity in the relative factor price at
consumption level Lu + λLs in the static model, or equivalently, the non-differentiability of
function E(C) at C = Lu + λLs, translates into a period with constant consumption in the
dynamic model. During this period, the relative factor price changes continuously over time.
Consumption grows at rate ξ−ρ

σ
again during [te1, t

b
2], followed by a constant consumption

period, ad infinitum.
The following proposition characterizes the life cycle dynamics of each industry. Define
mn ≡ tbn+1 − ten, ∀n ≥ 0.
Proposition 3. Suppose K0 is suffi ciently small. The economy starts with only industry 0
producing till time te0. For each industry n ≥ 1, its output exhibits a hump-shaped life-cycle
dynamic pattern: it first enters the market at time ten−1, its output rises for a period of
mn−1, reaches the peak at time tbn, and then the output remains constant till time t

e
n, after
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which the output declines for a period of mn, industry n disappears after ten+1, so its whole
life span is mn−1 + ten − tbn +mn , where

mn =
σ log Lu+λn+1Ls

Lu+λnLs

ξ − ρ , ∀n ≥ 0. (9)

and

ten − tbn =
ln a

λ

ξ − ρ,∀n ≥ 1.

Proof. Refer to the Appendix. Q.E.D.

The industrial dynamics characterized in the above theorem can be more intuitively illus-
trated in the following diagram.

[INSERT FIGURE 7]

It shows that the model predictions are qualitatively consistent with the stylized facts doc-
umented in Section 2. More concretely, each industry n ≥ 1 exhibits a hump-shaped life
cycle pattern (Fact 2), industries with higher capital-skill ratios reach their peak values
later (Fact 3), active industries are those whose capital-skill ratios are closest to the ratio
of total physical capital and skilled labor in the whole consumption good sector (Fact 4).
Moreover, observe that ∂mn

∂n
< 0, that is, the booming period is longer than the decline

period (mn−1 > mn), consistent with the asymmetric duration fact (Fact 5). As t → ∞,
mn → log λ

gC
. By comparison, the booming and declining periods of industry n are equal

(mn−1 = mn = log λ
gC
) in the JLW model (obtained by substituting Lu = 0 into (9)), so the

life span of every industry is equal to (2σ−1) log λ+ln a
ξ−ρ , which is longer than the life span of the

counterpart in the current model.
Combining the static results in Table 6 and the dynamic results summarized in Proposition
2 and Proposition 3, we obtain the following proposition about how skill premium interacts
with industrial dynamics over time.
Proposition 4. The skill premium ws

wu
is equal to one before time te0, and it is equal to

λn(a−λ)
a−1

when t ∈ [ten, t
e
n+1), for all n ≥ 1. Alternatively speaking, during the life span of

industry n ≥ 1, skill premium remains constant at λn(a−λ)
a−1

from ten−1, the time point when
industry n first enters the market, till time ten, at which point the skill premium jumps up
discontinuously to λn+1(a−λ)

a−1
and industry n starts to decline. The skill premium remains at

level λ
n+1(a−λ)
a−1

during the whole declining period of industry n till it exits the market at tbn+1..
The following figure plots the dynamics of skill premium.

[INSERT FIGURE 8]

We can see that the skill premium remains constant over time and jumps up discontinuously
only when a new (more capital-intensive) industry just enters the market. Moreover, the skill
premium changes more and more frequently over time, eventually converging to a constant
frequency.
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Part B: Human Capital Investment

Now we introduce human capital investment into the model. Unskilled labor can be trans-
formed into skilled labor via human capital investment. Both physical capital investment
and human capital investment are endogenously decided by private agents. By the Sec-
ond Welfare Theorem, we characterize the decentralized market equilibrium by solving the
following artificial benevolent social planner problem:

max
C(t),G(t)

∫ ∞
0

C(t)1−σ − 1

1− σ e−ρtdt, where σ ∈ (0, 1),

subject to

·
K = ξK − δ · E(C(t), Ls, Lu)−G(t), (10)
·
Ls = φL1−κ

u ·G(t)κ, (11)
·
Lu = gb · (Lu + Ls)−

·
Ls, (12)

and that K(0), Lu(0), Ls(0) are all given, where E(C(t), Ls, Lu) is still given by (7), but
Ls and Lu are now explicitly listed as endogenous state variables, G(t) is human capital
investment (per household) at time t and gb is the exogenous birth rate. We assume

gb < ξ <
ξ − ρ
σ

, (13)

which will be explained soon.

(10) states that human capital investment is costly and paid in terms of physical capital.
(11) says that how many new skilled labor is "produced" shall depend positively on the
total size of the current pool of unskilled labor Lu(t) and the human capital investment G(t)
per household. The parameter κ ∈ (0, 1) captures the relative importance of human capital
investment in "producing" skilled labor. A larger κ means that the process of transforming
unskilled labor into skilled labor is more intensive in human capital investment. The strictly
positive parameter φ measures the general effi ciency of the skill transformation process,
capturing all relevant factors such as the quality of the training program. (12) states that
the increase in the number of unskilled labor is equal to the newly born labor gb · (Lu + Ls)
(who are assumed to be unskilled labor automatically) net of those who are just transformed

into skilled labor
·
Ls. Let t̂bn and t̂

e
n denote the time point when output of good n first and

last reaches the highest level, respecitvely, for n ≥ 1. Let t̂e0 denote the last time point when
only good 0 is produced.

Proposition 5. When both physical capital investment and human capital investment are
endogenous, the consumption alternates between a high growth period with constant growth
rate given by5

gC =
ξ − ρ
σ

, ∀t ∈ [t̂en, t̂
b
n+1], for all n ≥ 0

5Note that the total measure of household remains constant equal to one but the population increases
over time. Now C(t) is consumption per household and per capita consumption is C(t)

Lu(t)+Ls(t)
.
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and a low growth period with growth rate gb for ∀t ∈ [t̂bn, t̂
e
n] for all n ≥ 1. there exists

a unique but different temporary Balanced Growth Path (BGP) for each different stage of
development (i.e., different industrial structure), on which the following is true

·
Ls
Ls

=

·
Lu
Lu

=

·
G

G
= gb (14)

for n ≥ 1. Moreover, on the temporary BGP when industries n and n + 1 coexist (t ∈
(t̂en, t̂

b
n+1)), the following is true

Ls
Lu

=
φχκn
gb

, (15)

G(t)

Lu(t)
= χn, (16)

where χn is uniquely determined by

(1− κ)φχκn =
an

λ− 1

{
(a− λ)− a− 1

λn

}
φκδχn

κ−1 − ξ, (17)

for n ≥ 1. In the very long run, Ls
Lu+Ls

→ 1, and the economy converges to one with only
skilled labor and physical capital, which is characterized in Ju, Lin and Wang (2015).
Proof. See the appendix. Q.E.D.

The proposition shows that the household consumption growth rate after industrialization is
still constant and equal to gC = ξ−ρ

σ
, so the growth rate of per capita consumption becomes

gC − gb, which is positive due to (13). It implies that the capital devoted to the production
of consumption goods increases at a rate higher than gC , so that capital per skilled labor
increases suffi ciently fast to support the consumption growth rate gC . (14) shows that human
capital investment, skilled labor and unskilled labor all grow at the same constant rate as the
birth rate gb on the temporary BGP when industry n and industry n+ 1 coexist. Moreover,
(15) and (16) state that the skill structure of the labor pool Ls

Lu
and human capital investment

per unskilled labor G
Lu
both remain constant on this temporary BGP.

The transitional dynamics between two neighboring temporary BGPs is the following: The
temporary BGP with the coexistence of industries 0, n and n + 1 is asymptotically reached
when t gets suffi ciently close to t̂en+1, and then at time point t̂

e
n+1, industry n disappears and

industry n + 2 is about to enter, the skill premium discontinuously jumps up, and optimal
human capital investment per unit of unskilled labor G

Lu
discontinuously jumps (up) from χn

to χn+1, so Ls grows faster than gb for a while until a new temporary BGP (with industries
0, n+ 1 and n+ 2 coexisting) is asymptotically reached as t gets suffi ciently close to t̂n+2, so
on and so forth.
Corollary 1. With endogenous human capital investment, the peak value of output of each
industry n ≥ 1 is strictly larger than the counterpart without human capital investment so
long as the population growth rate is non-negative. That is, x̂n(t̂bn) > xn(tbn) for any n ≥ 1,
if gb ≥ 0.
Proof. Observe that x̂n(t̂bn) = Lu(t̂

b
n) + λnLs(t̂

b
n) and xn(tbn) = Lu + λnLs. When gb ≥ 0, we

have Lu(t̂bn)+Ls(t̂
b
n) ≥ Lu+Ls (with = holding if and only if gb = 0). Moreover, Ls(t̂bn) > Ls
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because of positive human capital investment as implied in Proposition 5, so x̂n(t̂bn) > xn(tbn)
as λ > 1. Q.E.D
Corollary 2. The following is true on the temporary BGP when industries 0, n and n + 1
coexist for any n ≥ 1:

∂χn
∂n

> 0;
∂χn
∂δ

> 0;
∂χn
∂φ

> 0;
∂χn
∂a

> 0;
∂χn
∂ξ

< 0. (18)

Proof. Immediately implied by (17). Q.E.D
(18) implies that Ls

Lu
and G

Lu
both become strictly higher when the underlying supporting

industries have higher capital-skill ratios (n). As a result, Ls
Lu
also increases when industrial

upgrading occurs. Moreover, (15) and (17) jointly imply

lim
n→∞

Ls
Lu + Ls

= 1,

which means that all labor will be skilled labor in the very long run, the scenario as charac-
terized in Ju, Lin and Wang (2015).
(18) also shows that Ls

Lu
and G

Lu
both increase when capital depreciation rate δ becomes

larger, or when the effi ciency of skill transformation φ becomes higher, or when the capital-
skill ratio ladder of two neighboring industries a becomes larger. The reason is that a higher
δ weakens the desirability of using physical capital to produce consumption goods, so skilled
labor and hence human capital investment will be more favored. As a result, G

Lu
increases

and Ls
Lu
increases. Similarly, an increase in the effi ciency of skill transformation φ enhances

the marginal return of human capital investment, so it induces a higher G and higher Ls.
A higher a means that industrial upgrading becomes permanently more costly, therefore, to
ensure a constant positive consumption growth, it would be better to enhance human capital
investment to produce more skilled labor, leading to higher Ls

Lu
and G

Lu
.

Both Ls
Lu
and G

Lu
decrease with ξ because a larger ξ implies that the physical capital production

is more effi cient, so physical capital becomes more valuable relative to human capital, and
therefore, the incentive to invest human capital is weakened. As a result, both G(t)

Lu(t)
and Ls

Lu
decrease with ξ.
Furthermore, Ls

Lu
decreases with gb because faster growth of the unskilled labor pool means

less human capital investment for each unskilled labor for any given amount of total human
capital investment, hence a smaller fraction of skilled labor in the steady state. However,
G
Lu
is independent of gb as G can discontinuously jump up whenever new industries emerge,

but Ls has to change continuously.
Observe that χn+1

χn
> a,∀n ≥ 0 because (17) implies that

χκn+1

χκn
=

an+1

λ−1

{
(a− λ)− a−1

λn+1

}
φκδχκ−1

n+1 − ξ
an

λ−1

{
(a− λ)− a−1

λn

}
φκδχκ−1

n − ξ
>

an+1

λ−1

{
(a− λ)− a−1

λn+1

}
φκδχκ−1

n+1

an

λ−1

{
(a− λ)− a−1

λn

}
φκδχκ−1

n

>
aχκ−1

n+1

χκ−1
n

.

Thus, we conclude from (16) that the human capital investment per unskilled labor on the
new temporary BGP becomes more than a times larger than that on the previous temporary
BGP. Similarly, (15) implies that skilled to unskilled labor ratio becomes aκ times higher on
the new temporary BGP than the previous temporary BGP.
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Define m̂n ≡ t̂bn+1 − t̂en, ∀n ≥ 0.
Proposition 6. For each industry n ≥ 1, its output exhibits a hump-shaped life-cycle
dynamic pattern: it enters the market at time t̂en−1, its output rises for a period of m̂n−1,
and reaches the peak at time t̂bn, after which its output declines for a period of m̂n and the
industry exit the market after t̂en+1. During industry n’s whole life span, skill premium is
λn−1(a−λ)

a−1
when industry n is booming (i.e., when t ∈ [t̂en−1, t̂

b
n)) and the skill premium jumps

to λn(a−λ)
a−1

when industry n declines ( i.e., when t ∈ [t̂en, t̂
b
n+1)), where

m̂n ≈
log gb+φλ

n+1χκn
gb+φλ

nχκn−1

ξ−ρ
σ
− gb

,∀ suffi ciently large n > 1, (19)

where χn is determined by (17). Moreover, m̂n > mn for all n > 1, where mn is given by
(9).
Proof. Since C grows at a constant rate gC = ξ−ρ

σ
on the BGP, and

C(t̂n) = Lu(t̂n) + λnLs(t̂n), for n ≥ 1,

thus we have

m̂n =
log Lu(t̂n+1)+λn+1Ls(t̂n+1)

Lu(t̂n)+λnLs(t̂n)

gC
=

log Lu(t̂n+1)

Lu(t̂n)

1+λn+1 Ls(t̂n+1)

Lu(t̂n+1)

1+λn
Ls(t̂n)

Lu(t̂n)

gC

≈
log egb(t̂n+1−t̂n)

1+λn+1 φχ
κ
n

gb

1+λn
φχκn−1
gb

gC
=

gbm̂n + log
1+λn+1 φχ

κ
n

gb

1+λn
φχκn−1
gb

gC
,

where the last equation uses the definition of m̂n. Solving out m̂n yields (19). The third
semi-equation comes from (14) and (15). It is not exactly equal for two reasons. First, the
growth rate of Lu is constant at rate gb only on the BGP, but not always so off the BGP. For
example, during the transition period between two different temporary steady state levels of
G
Lu
, say χn and χn+1, the growth rate of Lu is lower than gb because human capital investment

G and Ls both grow at a rate higher than gb, so
Lu(t̂n+1)

Lu(t̂n)
is actually smaller than egb(t̂n+1−t̂n).

Second, Ls(t̂n+1)

Lu(t̂n+1)
cannot jump discontinuously at time point t̂n+1 although G(t) jumps up at

point t̂n+1, so the ratio
Ls(t̂n+1)

Lu(t̂n+1)
is the same as the one on the BGP when industry n and

industry n+ 1 coexist.
To show m̂n > mn, notice that, first, the aggregate consumption growth rate gc is always
the same. Second, both Lu and Ls remain constant in Part A but grow at a positive rate
(equal to gb on the BGP) in Part B, so the capital devoted to consumption production (E)
increases more slowly in Part B than in Part A. As a result, E

Ls
grows more slowly in Part

B than in Part A, which means it takes a longer time for E
Ls
to increase from an to an+1, so

m̂n > mn. Q.E.D

This proposition largely resembles Proposition 2 and Proposition 3 in that all predictions
are still consistent with Facts 0-4. Moreover, same as in Part A, the "shakeout" pattern
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of industrial dynamics is also preserved, as implied by (19). The major difference is that,
now with endogenous human capital investment, industry life spans are longer than before,
so the skill premium changes less frequently than in Part A. This would be still true even
when gb = 0 because Ls keeps increasing in Part B, so

E(C)
Ls

grows more slowly than in Part
A because C still grows at the speed gC = ξ−ρ

σ
. Observe that lim

n→∞
mn = log λ

gC−gb , which means

that life spans of industries, hence the frequencies of skill premium adjustment, eventually
will be identical.

Part C. Human Capital Externality

Now we introduce externality in human capital investment. Everything is identical to Part
B except that (11) is replaced by the following:

·
Ls = φ

[
L1−κ
u ·G(t)κ

]1−ζ
G
ζ
(t), (20)

where G(t) is the average household spending on human capital investment at time t and
the parameter ζ ≥ 0. Part B is a special case when ζ = 0. When ζ > 0, it captures
the positive externality in human capital investment. For instance, when your neighbors
make private investment on human capital for their family members such as participating
in training programs or going to professional schools, it helps create market demand for
those services, so both the supply and quality of such services will improve due to market
competition. Moreover, watching and interacting with your neighbours who purchase those
services may also help increase the skills of your family members. You benefit from your
neighbors’private invesment in human capital without compensating them.

Proposition 6. In the laissez affaire decentralizaed market equilibrium with positive exter-
nality in human capital investment ( ζ > 0), there exists a unique but different temporary
Balanced Growth Path (BGP) for each different stage of development. More specifically,
denote human capital investment per unskilled labor by χ̃n(t) ≡ G(t)

Lu(t)
when industry n and

industry n + 1 coexist with industry 0 (that is, t ∈ [t̃n, t̃n+1)). The following is true on the
temporary BGP for the corresponding stage of development:

gC =
ξ − ρ
σ

·
Ls
Ls

=

·
Lu
Lu

=

·
G(t)

G(t)
= gb (21)

Ls
Lu

=
φ

gb
χ̃κ(1−ζ)+ζ
n , (22)

where χ̃n is uniquely determined by

ξ

φκ (1− ζ)
χ̃n

(1−κ)(1−ζ) = δ

[
an(a− λ)

λ− 1
− an+1 − an

λn+1 − λn
]
− (1− κ)

κ
χ̃n, (23)
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which implies the following properties:

∂χ̃n
∂ξ

< 0;
∂χ̃n
∂δ

> 0;
∂χ̃n
∂n

> 0;
∂χ̃n
∂φ

> 0;
∂χ̃n
∂ζ

< 0;
∂χ̃n
∂a

> 0 (24)

for ∀n ≥ 1. In the very long run, Ls
Lu+Ls

→ 1, and the economy converges to one with only
skilled labor and physical capital, which is characterized in Ju, Lin and Wang (2015).

Proof: See details in the appendix. Q.E.D
Comparing (24) with (18) in Part B, we see that human capital investment per unskilled
labor χ̃n decreases with the degree of externality ζ, as it encourages free riding and dampens
private incentive to invest in human capital. It implies that χ̃n is strictly lower than χn as
characterized in Part B. All other comparative static properties of χ̃n are same as those of
χn. Comparing (15) and (22) shows that, when χ̃n increases by one per cent,

Ls
Lu
increases by

κ(1− ζ) + ζ per cent, which is more elastic than the case in part B. It is because the former
benefits from externalities, so the gain is larger for the same amount of private human capital
invesment. Moreover, following the same method as before, we can show that χ̃n+1

χ̃n
> a, for

∀n ≥ 1.
The counterpart to Proposition 6 is the following:
Define m̃n ≡ t̃n+1 − t̃n, ∀n ≥ 0.
Proposition 7. In the laissez affaire decentralizaed market equilibrium with positive ex-
ternality in human capital investment ( ζ > 0), for each industry n ≥ 1, its value added
exhibits a hump-shaped life-cycle dynamic pattern: it appears at time t̃n−1, its output rises
for a period of m̃n−1, and reaches the peak at time t̃n, after which its output declines for a
period of m̃n and disappears after t̃n+1. During industry n’s whole life span m̃n−1 + m̃n ,
skill premium is λn−1(a−λ)

a−1
when industry n is booming (i.e., when t ∈ [t̃n−1, t̃n)) and the skill

premium jumps to λn(a−λ)
a−1

when industry n declines (i.e., when t ∈ [t̃n, t̃n+1)), where

m̃n ≈
log gb+φλ

n+1χ̃
κ(1−ζ)+ζ
n

gb+φλ
nχ̃

κ(1−ζ)+ζ
n−1

ξ−ρ
σ
− gb

, ∀ suffi ciently large n > 1, (25)

where χ̃n is determined by (23). Moreover, m̃n > m̂n for all n > 1, where m̂n is given by
(19).

The proposition states that the life span of an industry is longer than that of the corre-
sponding industry without human capital externality (m̃n > m̂n for all n > 1). Why?
Because

m̃n =
log Lu(t̃n+1)+λn+1Ls(t̃n+1)

Lu(t̃n)+λnLs(t̃n)

gC
=

log
[
1 + Lu(t̃n+1)−Lu(t̃n)+λn+1Ls(t̃n+1)−λnLs(t̃n)

Lu(t̃n)+λnLs(t̃n)

]
gC

the consumption is that Observe that when ζ → 1, no household has incentives to make
any private human capital investment because all households want to free ride on other
households’ investment, leading to zero human capital investment, which is precisely the
case explored in Part A (when gb = 0).
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The existence of externality in human capital investment implies that the market equilibrium
is not Pareto effi cient.
Proposition 8. With positive externality in human capital investment ( ζ > 0), the first best
human capital investment per unskilled labor G(t)

Lu(t)
is higher than that in the Laissez affaire

decentralized market equilibrium on the temporary Balanced Growth Path (BGP) for each
corresponding stage of development. More specifically, denote human capital investment per
unskilled labor by χ̃∗n(t) ≡ G(t)

Lu(t)
when industry n and industry n + 1 coexist with industry 0

(that is, t ∈ [t̃∗n, t̃
∗
n+1)). The following is true on the temporary BGP for the corresponding

stage of development:

gC =
ξ − ρ
σ

·
Ls
Ls

=

·
Lu
Lu

=

·
G(t)

G(t)
= gb (26)

Ls
Lu

=
φ

gb
χ̃∗κ(1−ζ)+ζ
n , (27)

where χ̃∗n is uniquely determined by

ξ

φ [κ (1− ζ) + ζ]
χ̃∗(1−κ)(1−ζ)
n = δ

[
an(a− λ)

λ− 1
− an+1 − an

λn+1 − λn
]
− (1− κ)[

κ+ ζ
(1−ζ)

] χ̃∗n, (28)

which implies the following properties:

∂χ̃∗n
∂ξ

< 0;
∂χ̃∗n
∂δ

> 0;
∂χ̃∗n
∂n

> 0;
∂χ̃∗n
∂φ

> 0;
∂χ̃∗n
∂ζ

> 0;
∂χ̃∗n
∂a

> 0 (29)

for ∀n ≥ 1. In the very long run, Ls
Lu+Ls

→ 1, and the economy converges to one with only
skilled labor and physical capital, which is characterized in Ju, Lin and Wang (2015).

Proof: See details in the appendix. Q.E.D

Observe that ∂χ̃∗n
∂ζ

> 0, opposite to the case in the laissesz affair decentralized market

equilibrium∂χ̃n
∂ζ

< 0. This is because the social return to human capital investment in-
creases with the degree of positive externaly (captured by ζ), so the first best amount of
investment increases with ζ. However, in the laissez affair decentralized market equilibrium,
larger externality (higher ζ) implies a stronger private incentive to free ride on other people’s
human capital investment, leading to a lower private investment and hence underinvestment
in human capital in equilibirum.

Proposition 9. With positive externality in human capital investment ( ζ > 0), the first
best industry dynamics is as following: For each industry n ≥ 1, its value added exhibits a
hump-shaped life-cycle dynamic pattern: it appears at time t̃∗n−1, its output rises for a period
of m̃∗n−1, and reaches the peak at time t̃∗n, after which its output declines for a period of m̃

∗
n

and disappears after t̃∗n+1. During industry n’s whole life span m̃∗n−1 +m̃∗n , skill premium is
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λn−1(a−λ)
a−1

when industry n is booming (i.e., when t ∈ [t̃∗n−1, t̃
∗
n)) and the skill premium jumps

to λn(a−λ)
a−1

when industry n declines ( i.e., when t ∈ [t̃∗n, t̃
∗
n+1)), where

m̃∗n ≈
log gb+φλ

n+1χ̃
∗κ(1−ζ)+ζ
n

gb+φλ
nχ̃
∗κ(1−ζ)+ζ
n−1

ξ−ρ
σ
− gb

,∀ suffi ciently large n > 1, (30)

where χ̃n is determined by (??). Moreover, m̃∗n > m̃n > m̂n for all n > 1, where m̂n and
m̃n are given by (19) and (25), respectively.

The industry life span is even longer than the laissez faire counterpart, mainly because the
amount of skilled labor increases faster whereas physical capital investment becomes smaller.
All the equilibrium patterns are still consistent with all the stylized facts established earlier.

5. Conclusion

In this paper, we document several stylized facts about skill premium, endowment structures
(capital, skilled labor and unskilled labor), and industrial dynamics at disaggregated levels
using the US and cross-country manufacturing data. Motivated by these stylized facts, we
build a tractable endogenous growth model with infinite industries, which are heterogeneous
in capital-skill ratios. The model predictions are qualitatively consistent with all the stylized
facts. Our model shows explicitly how skill premium dynamics at the aggregate level is logi-
cally connected to the life-cycle dynamics of underlying industries at the disaggregated level,
so it provides a structural micro-foundation for the aggregate models with exogenous skill-
biased technological progress, which are currently the dominant framework for the analysis
of skill premium in the macro literature. Our model implies that the optimal human capital
investment is stage-dependent and varies with the underlying industrial structures. More-
over, human capital investment should be synchronyzed with physical capital investment in a
way that best accommodates the changing demand for skill and capital from the underlying
industries, the structure of which also changes endogenously over time. We highlight that
the driving force for structural change at the disaggregated industry level in our model is
the endogenous change in factor endowment structures (capital-skill ratios), different from
the standard mechanisms in the literature of structural transformation.
For most part of the model, there is no role of government as the first welfare theorem
applies. However, if we deviate from the first-best environment by introducing external-
ities (as shown in Section 4.3), or other relevant frictions such as financial frictions and
labor market frictions, the endogenous skill premium dynamics will be presumably different
and there would be scopes for discussing welfare-enhancing roles of government. For all
these promising directions for future research, a prerequisite is a good understanding of the
first-best benchmark model developed in this paper. Other interesting avenues for future
research include introducing international trade (see Parro, 2013, Burstein and Vogel, 2017),
non-competitive market structures (Klepper and Graddy,1990; Bertomeu, 2009), and/or
embedding heterogeneous firms to study firm dynamics together with industry dynamics
(Dinlersoz and MacDonald, 2009).
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Mathematical Appendix

Proof for Proposition 1.

Proof.

max
{kn},{lun},{lsn}

∞∑
n=0

λnFn(kn, lsn, lun),

subject to

∞∑
n=0

kn ≤ K;

∞∑
n=0

lun ≤ Lu;
∞∑
n=0

lsn ≤ Ls;

kn ≥ 0; lun ≥ 0; lsn ≥ 0

;where

xn = Fn(kn, lsn, lun) =

{
lun + lsn, if n = 0

lun
bn

+ min{kn
an
, lsn}, if n ≥ 1

.

First of all, we show that Lu must be fully used and only used to produce good 0. Observe
that Lu must be fully used up because it can be at least used to produce x0. Now suppose
some unskilled labor is used to produce some good n ≥ 1, that is, lun > 0 for some n ≥ 1,
then the marginal product of unskilled labor in the production of the final good is λn

bn
, which

is strictly smaller than one because λ < b, so it is a contradiction. As a result, lun = 0 for
all n ≥ 1 in equilibrium, the production functions of industries can be rewritten as

xn = Fn(kn, lsn, lun) =

{
lun + lsn, if n = 0

min{kn
an
, lsn}, if n ≥ 1

,

When 0 ≤ K < aLs,

Suppose xj > 0 and xj′ > 0. WLOG, assume 1 ≤ j < j′. We show by contradiction that
it must be true that j′ = j + 1. Suppose j′ ≥ j + 2. Let ws denote marginal product of
skilled labor, wu denote marginal product of unskilled labor, and r denote marginal product
of physical capital. Let pn denote price of good n. Then from the previous analysis, we know
that

xn = Fn(kn, lsn, 0) = min{kn
an
, lsn}, if n ≥ 1 ,

which implies
pn = anr + ws.

So when xj > 0 and xj′ > 0, we must have

pj′

pj
=
λj
′

λj
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that is,

aj
′
r + ws

ajr + ws
=

λj
′

λj
= λj

′−j

aj
′
r + ws =

(
ajr + ws

)
λj
′−j

ws =
ajr(aj

′−j − λj′−j)
(λj

′−j − 1)

Suppose j′ − j ≥ 2, then

pj+1

pj
=

aj+1r + ws
ajr + ws

=
aj+1r + ajr(aj

′−j−λj′−j)
(λj
′−j−1)

ajr + ajr(aj′−j−λj′−j)
(λj
′−j−1)

=
a(λj

′−j − 1) + (aj
′−j − λj′−j)

(λj
′−j − 1) + (aj′−j − λj′−j)

= λj
′−j a− 1

aj′−j − 1

λj
′−j a− 1

aj′−j − 1
> λ

λj
′−j−1 >

aj
′−j − 1

a− 1

Proof for Proposition 2.

When t ∈ [ten, t
b
n+1], industry n declines over time and industry n + 1 rises over time, we

know that during this period C(t) ∈ [λnLs + Lu, λ
n+1Ls + Lu] for any n ≥ 1, and we have

the following discounted-value Hamiltonian:

H0,n,n+1 =
C(t)1−σ − 1

1− σ e−ρt + λ̂n,n+1 [ξK − δ · E0,n,n+1(C(t))] (31)

First order conditions

∂H0,n,n+1

∂C
= 0⇒ C(t)−σe−ρt = λ̂n,n+1δ

an+1 − an

λn+1 − λn
(32)

⇒ −σ
·
C

C
− ρ =

·

λ̂n,n+1

λ̂n,n+1

(33)

·

λ̂n,n+1 = −∂H0,n,n+1

∂K
⇒

·

λ̂n,n+1

λ̂n,n+1

= −ξ (34)

which jointly imply
·
C

C
=
ξ − ρ
σ

.
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In particular, when t = tbn+1, we should have

C(tbn+1)−σe−ρt
b
n+1 = λ̂n,n+1(tbn+1)δ

an+1 − an

λn+1 − λn
. (35)

When t = ten+1, we should have

C(ten+1)−σe−ρt
e
n+1 = λ̂n+1,n+2(ten+1)δ

an+2 − an+1

λn+2 − λn+1 . (36)

Now we show by contradiction that tbn+1 < ten+1. Suppose t
b
n+1 = ten+1 = tn+1, the optimality

conditions require
H0,n,n+1(tn+1) = H0,n+1,n+2(tn+1),

and
λ̂n,n+1(tn+1) = λ̂n+1,n+2(tn+1).

Substituting the second equation into (35) and (36), and revoking the fact that

C(tbn+1) = C(ten+1) = λn+1Ls + Lu, (37)

we obtain
an+1 − an

λn+1 − λn
=
an+2 − an+1

λn+2 − λn+1 ,

a contradiction. Therefore, we prove that tbn+1 < ten+1. We know that C(t) = λn+1Ls + Lu
for any t ∈ [tbn+1, t

e
n+1]. Now we pin down this duration ten+1 − tbn+1. When t ∈ [tbn+1, t

e
n+1],

E0,n+1(C(t)) = λn+1Ls, and we have the following discounted-value Hamiltonian:

H0,n+1 =
C(t)1−σ − 1

1− σ e−ρt + λ̂n+1

[
ξK − δ · an+1Ls

]
+ ηn+1(λn+1Ls + Lu − C) (38)

∂H0,n+1

∂C
= 0⇒ C(t)−σe−ρt = ηn+1

−
·

λ̂n+1 =
∂H0,n+1

∂K
= ξλ̂n+1

thus we have
λ̂n+1(t) = λ̂n+1(tbn+1)e−ξ(t−t

b
n+1)

for any t ∈ [tbn+1, t
e
n+1]. In particular,

λ̂n+1(ten+1) = λ̂n+1(tbn+1)e−ξ(t
e
n+1−tbn+1),

Note that the optimality condition requires

λ̂n,n+1(tbn+1) = λ̂n+1(tbn+1);

λ̂n+1(ten+1) = λ̂n+1,n+2(ten+1),
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therefore, the previous three equations jointly imply that

λ̂n+1,n+2(ten+1) = λ̂n,n+1(tbn+1)e−ξ(t
e
n+1−tbn+1)

which, together with (35), (36) and (37), yields

ten+1 − tbn+1 =
ln a

λ

ξ − ρ.

Thus the whole life cycle of industry n+1 consists of a rising period (ten, t
b
n+1), a peak period

[tbn+1, t
e
n+1], and a decline period (ten+1, t

b
n+2]. Its life span is equal to tbn+2 − ten. It is easy to

see that

tbn+1 − ten =
ln λn+1Ls+Lu

λnLs+Lu
ξ−ρ
σ

;∀n ≥ 1.

Proof for Proposition 5.

Proof. Substituting (11) into (12) yields

·
Lu = gb · (Lu + Ls)− φL1−κ

u ·G(t)κ.

Suppose C(t) ∈ (λnLs + Lu, λ
n+1Ls + Lu) for any n ≥ 1. Establish the discounted-value

Hamiltonian as follows:

H =
C(t)1−σ − 1

1− σ e−ρt + λ̂n,n+1 [ξK − δ · E(C(t))−G(t)] + η
[
gb · (Lu + Ls)− φL1−κ

u ·G(t)κ
]

+ ψφL1−κ
u ·G(t)κ

=
C(t)1−σ − 1

1− σ e−ρt + λ̂n,n+1

{
ξK − δ ·

[
an+1 − an

λn+1 − λn
C −

(
an+1 − an

λn+1 − λn
Lu +

an(a− λ)

λ− 1
Ls

)]
−G(t)

}
+ηgb · (Lu + Ls) + (ψ − η)φL1−κ

u ·G(t)κ

First order conditions:

∂H

∂C
= 0⇒ C(t)−σe−ρt = λ̂n,n+1δ

an+1 − an

λn+1 − λn
⇒ −σ

·
C

C
− ρ =

·

λ̂n,n+1

λ̂n,n+1

(39)

∂H

∂G
= 0⇒ [ψ − η]κφL1−κ

u ·G(t)κ−1 = λ̂n,n+1 (40)

·

λ̂n,n+1 = −∂H
∂K
⇒

·

λ̂n,n+1

λ̂n,n+1

= −ξ (41)

·
η = − ∂H

∂Lu
⇒

·
η

η
= −gb − δ

λ̂n,n+1

η

an+1 − an

λn+1 − λn
+

(
1− ψ

η

)
φ (1− κ)L−κu ·G(t)κ(42)

·
ψ = − ∂H

∂Ls
⇒

·
ψ

ψ
= −

[
δ
λ̂n,n+1

ψ

an(a− λ)

λ− 1
+
η

ψ
gb

]
(43)
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(39) and (41) jointly imply
·
C

C
=
ξ − ρ
σ

.

·
η
η
is a constant when

·
Lu
Lu

=
·
G
G
and

·
η
η

=

·
λ̂n,n+1

λ̂n,n+1
=

·
ψ
ψ
both hold, in which case

·
η

η
= −gb − δ

λ̂n,n+1

η

an+1 − an

λn+1 − λn
+

(
1− ψ

η

)
φ (1− κ)L−κu ·G(t)κ = ρ− ξ,

so that

L−κu ·G(t)κ = −
ξ − gb − δ λ̂n,n+1

η
an+1−an
λn+1−λn(

1− ψ
η

)
φ (1− κ)

. (44)

By (11),
·
Ls
Ls
is constant if and only if

·
Ls
Ls

=
·
Lu
Lu

=
·
G
G
. Let gG ≡

·
G
G
. (12) implies

·
Lu
Lu

= gb ·
(

1 +
Ls
Lu

)
− Ls
Lu

·
Ls
Ls

gG = gb + (gb − gG)
Ls
Lu
,

which can be true if and only if gG = gb because Ls
Lu
> 0. Thus

·
Ls
Ls

=

·
Lu
Lu

=

·
G

G
= gb.

(40) can be rewritten as

λ̂n,n+1

η
= −φL1−κ

u · κG(t)κ−1

(
1− ψ

η

)
. (45)

Substitute out λ̂n,n+1

η
in (45) into equation (44), we obtain(

1− ψ

η

)
(1− κ)φ

[
G(t)

Lu(t)

]κ
= gb − ξ −

(
1− ψ

η

)
φκδ

an+1 − an

λn+1 − λn
[
G(t)

Lu(t)

]κ−1

. (46)

Since
·
η
η

=

·
λ̂n,n+1

λ̂n,n+1
=

·
ψ
ψ
, (43) and (41) jointly imply

δ
λ̂n,n+1

η

an(a− λ)

λ− 1
+ gb = ξ

ψ

η
(47)

so we have three unknowns λ̂n,n+1

η
, ψ
η
, G(t)
Lu(t)

and three equations (45)-(47).

Using the brutal force, we obtain (17), that is,
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(1− κ)φ

[
G(t)

Lu(t)

]κ
=

an

λ− 1

{
(a− λ)− a− 1

λn

}
φκδ

[
G(t)

Lu(t)

]κ−1

− ξ,

which uniquely determines G(t)
Lu(t)

. Denote this solution by χn. By (11), we have

Ls
Lu

=
φχκn
gb

,

and

ψ

η
=

gb − φL1−κ
u · κG(t)κ−1δ a

n(a−λ)
λ−1

ξ − φL1−κ
u · κG(t)κ−1δ a

n(a−λ)
λ−1

= 1 +
ξ − gb

(1− κ)φχκn + an

λ−1
a−1
λn
φκδχκ−1

n

λ̂n,n+1

η
=

ξ ψ
η
− gb

δ a
n(a−λ)
λ−1

=

ξ

[
1− gb−ξ

(1−κ)φχκn+ an

λ−1
a−1
λn

φκδχκ−1
n

]
− gb

δ a
n(a−λ)
λ−1

= (ξ − gb) (λ− 1)
1 + ξ

(1−κ)φχκn+ an

λ−1
a−1
λn

φκδχκ−1
n

δan(a− λ)

(1− κ)φ

[
G(t)

Lu(t)

]κ
+

an

λ− 1

a− 1

λn
φκδ

[
G(t)

Lu(t)

]κ−1

=
an(a− λ)

λ− 1
φκδ

[
G(t)

Lu(t)

]κ−1

− ξ.

m̂n =
log

Lu(t̂bn+1)+λn+1Ls(t̂bn+1)

Lu(t̂en)+λnLs(t̂en)

gC
=

log
Lu(t̂bn+1)

Lu(t̂en)

1+λn+1 Ls(t̂bn+1)

Lu(t̂bn+1)

1+λn
Ls(t̂en)

Lu(t̂en)

gC

=

log egb(t̂
b
n+1−t̂en)

1+λn+1 φχ
κ
n+1
gb

1+λn
φχκn
gb

gC
=

gbm̂n + log
1+λn+1 φχ

κ
n+1
gb

1+λn
φχκn
gb

gC
,

which implies

m̂n =

log
1+λn+1 φχ

κ
n+1
gb

1+λn
φχκn
gb

gC − gb
=

log

[
1 +

λn+1 φχ
κ
n+1
gb
−λn φχ

κ
n

gb

1+λn
φχκn
gb

]
gC − gb

=

log

[
1 +

λχκn+1
χκn

−1

1

λn
φχκn
gb

+1

]
gC − gb

.

Now we prove that t̂bn+1 < t̂en+1. In particular, when t = t̂bn+1, by (39), we should have

C(t̂bn+1)−σe−ρt̂
b
n+1 = λ̂n,n+1(t̂bn+1)δ

an+1 − an

λn+1 − λn
. (48)
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When t = t̂en+1, we should have

C(t̂en+1)−σe−ρt̂
e
n+1 = λ̂n+1,n+2(t̂en+1)δ

an+2 − an+1

λn+2 − λn+1 . (49)

Suppose t̂bn+1 = t̂en+1 = t̂n+1, the optimality conditions require

H0,n,n+1(t̂n+1) = H0,n+1,n+2(t̂n+1),

and
λ̂n,n+1(t̂n+1) = λ̂n+1,n+2(t̂n+1).

Substituting the second equation into (48) and (49), and revoking the fact that

C(t̂bn+1) = C(t̂en+1) = λn+1Ls
(
t̂n+1

)
+ Lu(t̂n+1),

we obtain
an+1 − an

λn+1 − λn
=
an+2 − an+1

λn+2 − λn+1 ,

a contradiction. Therefore, we prove that t̂bn+1 < t̂en+1. We know that C(t) = λn+1Ls(t) +

Lu(t) for any t ∈ [t̂bn+1, t̂
e
n+1]. Now we pin down this duration t̂en+1 − t̂bn+1. When t ∈ [t̂bn+1,

t̂en+1], E0,n+1(C(t)) = an+1Ls(t), and we have the following discounted-value Hamiltonian:

H0,n+1 =
C(t)1−σ − 1

1− σ e−ρt + λ̂n+1

[
ξK − δ · an+1Ls

]
+ ζn+1(λn+1Ls + Lu − C)

+ηn+1

[
gb · (Lu + Ls)− φL1−κ

u ·G(t)κ
]

+ ψn+1φL
1−κ
u ·G(t)κ (50)

∂H0,n+1

∂C
= 0⇒ C(t)−σe−ρt = ζn+1

−
·

λ̂n+1 =
∂H0,n+1

∂K
= ξλ̂n+1

thus we have
λ̂n+1(t) = λ̂n+1(t̂bn+1)e−ξ(t−t̂

b
n+1)

for any t ∈ [t̂bn+1, t̂
e
n+1]. In particular,

λ̂n+1(t̂en+1) = λ̂n+1(t̂bn+1)e−ξ(t̂
e
n+1−t̂bn+1),

Note that the optimality condition requires

λ̂n,n+1(t̂bn+1) = λ̂n+1(t̂bn+1);

λ̂n+1(t̂en+1) = λ̂n+1,n+2(t̂en+1),

therefore, the previous three equations jointly imply that

λ̂n+1,n+2(t̂en+1) = λ̂n,n+1(t̂bn+1)e−ξ(t̂
e
n+1−t̂bn+1)

which, together with (48), (49), we obtain
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C(t̂en+1)−σ

C(t̂bn+1)−σ
=

a

λ
e(ρ−ξ)(t̂en+1−t̂bn+1)

−σ ln
C(t̂en+1)

C(t̂bn+1)
= ln

a

λ
+ (ρ− ξ) (t̂en+1 − t̂bn+1)

=====

C(t̂bn+1)−σe−ρt̂
b
n+1 = λ̂n+1(t̂bn+1)δ

an+1 − an

λn+1 − λn
. (51)

When t = t̂en+1, we should have

C(t̂en+1)−σe−ρt̂
e
n+1 = λ̂n+1(t̂en+1)δ

an+2 − an+1

λn+2 − λn+1 . (52)

=====
When t ∈ [t̂bn+1, t̂

e
n+1], we have C(t) = λn+1Ls(t)+Lu(t). The corresponding discounted-value

Hamiltonian is given by

H0,n+1 =
C(t)1−σ − 1

1− σ e−ρt + λ̂n+1

[
ξK − δ · an+1Ls

]
+ ζn+1(λn+1Ls + Lu − C)

+ηn+1

[
gb · (Lu + Ls)− φL1−κ

u ·G(t)κ
]

+ ψn+1φL
1−κ
u ·G(t)κ (53)

The first order conditions are

∂H

∂C
= 0⇒ C(t)−σe−ρt = ζn+1 ⇒ −σ

·
C

C
− ρ =

·
ζn+1

ζn+1

(54)

∂H

∂G
= 0⇒

[
ψn+1 − ηn+1

]
κφL1−κ

u ·G(t)κ−1 = λ̂n+1 (55)

·

λ̂n+1 = −∂H
∂K
⇒

·

λ̂n+1

λ̂n+1

= −ξ (56)

·
ηn+1 = − ∂H

∂Lu
= −

[
ζn+1 + ηn+1

(
gb − (1− κ)φL−κu ·G(t)κ

)
+ ψn+1 (1− κ)φL−κu ·G(t)κ

]
(57)

·
ψn+1 = − ∂H

∂Ls
= −

[
−λ̂n+1δ · an+1 + ζn+1λ

n+1 + ηn+1gb

]
(58)

(57) implies

·
ηn+1 = − ∂H

∂Lu
= −

[
ζn+1 + ηn+1

(
gb − (1− κ)φL−κu ·G(t)κ

)
+ ψn+1 (1− κ)φL−κu ·G(t)κ

]
·

ηn+1 = −
[
ζn+1 + ηn+1gb +

(
ψn+1 − ηn+1

)
(1− κ)φL−κu ·G(t)κ

]
which implies

·
ηn+1

ηn+1

= −
[
ζn+1

ηn+1

+ gb +

(
ψn+1

ηn+1

− 1

)
(1− κ)φL−κu ·G(t)κ

]
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or

ξ =
ζn+1

ηn+1

+ gb +

(
ψn+1

ηn+1

− 1

)
(1− κ)φL−κu ·G(t)κ

ηn+1

ψn+1

ξ =
ζn+1

ψn+1

+
ηn+1

ψn+1

gb +

(
1− ηn+1

ψn+1

)
(1− κ)φχ̂κn+1

(58) implies
·

ψn+1

ψn+1

= −
[
− λ̂n+1

ψn+1

δ · an+1 +
ζn+1

ψn+1

λn+1 +
ηn+1

ψn+1

gb

]

ξ = − λ̂n+1

ψn+1

δ · an+1 +
ζn+1

ψn+1

λn+1 +
ηn+1

ψn+1

gb

On the BGP, we have
·

ψn+1

ψn+1

=

·

λ̂n+1

λ̂n+1

=

·
ηn+1

ηn+1

= −ξ

so

−σ
·
C

C
− ρ =

·
ζn+1

ζn+1

Since
·
Lu
Lu

= gb ·
(

1 +
Ls
Lu

)
− Ls
Lu

·
Ls
Ls

gG = gb + (gb − gG)
Ls
Lu
,

we must have
·
Lu
Lu

=

·
G

G
=

·
Ls
Ls

= gb

so
·
C

C
= gb

and
·

ζn+1

ζn+1

= −σ
·
C

C
− ρ = −σgb − ρ

(13) implies that
−σgb − ρ > −ξ

(55) implies [
ψn+1

λ̂n+1

− ηn+1

λ̂n+1

]
κφL1−κ

u ·G(t)κ−1 = 1[
1− ηn+1

ψn+1

]
κφ =

λ̂n+1

ψn+1

χ̂1−κ
n+1

34



Define G(t)
Lu(t)

= χ̂n+1, we have

·
ψn+1

ψn+1

=

·

λ̂n+1

λ̂n+1

·
Ls = φL1−κ

u ·G(t)κ

λn+1Ls + Lu = C

·
Lu = gb · (Lu + Ls)− φL1−κ

u ·G(t)κ.

so
·
C = λn+1

·
Ls +

·
Lu

=
(
λn+1 − 1

)
φL1−κ

u ·G(t)κ + gb · (Lu + Ls)

Thus the whole life cycle of industry n+1 consists of a rising period (ten, t
b
n+1), a peak period

[tbn+1, t
e
n+1], and a decline period (ten+1, t

b
n+2]. Its life span is equal to tbn+2 − ten. It is easy to

see that

tbn+1 − ten =
ln λn+1Ls+Lu

λnLs+Lu
ξ−ρ
σ

;∀n ≥ 1.

Q.E.D.

alternative proof for prop 5

Proof. Substituting (11) into (12) yields

·
Lu = gb · (Lu + Ls)− φL1−κ

u ·G(t)κ.

Suppose C(t) ∈ (λnLs + Lu, λ
n+1Ls + Lu) for any n ≥ 1. Establish the current-value

Hamiltonian as follows:

H =
C(t)1−σ − 1

1− σ + λ̂ [ξK − δ · E(C(t))−G(t)] + η
[
gb · (Lu + Ls)− φL1−κ

u ·G(t)κ
]

+ ψφL1−κ
u ·G(t)κ

=
C(t)1−σ − 1

1− σ + λ̂

{
ξK − δ ·

[
an+1 − an

λn+1 − λn
C −

(
an+1 − an

λn+1 − λn
Lu +

an(a− λ)

λ− 1
Ls

)]
−G(t)

}
+ηgb · (Lu + Ls) + (ψ − η)φL1−κ

u ·G(t)κ
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First order conditions:

∂H

∂C
= 0⇒ C(t)−σ = λ̂δ

an+1 − an

λn+1 − λn
⇒ −σ

·
C

C
=

·

λ̂

λ̂
(59)

∂H

∂G
= 0⇒ [ψ − η]κφL1−κ

u ·G(t)κ−1 = λ̂ (60)

·

λ̂ = ρλ̂− ∂H

∂K
⇒

·

λ̂

λ̂
= ρ− ξ (61)

·
η = ρη − ∂H

∂Lu

⇒
·
η

η
= ρ− gb − δ

λ̂

η

an+1 − an

λn+1 − λn
+

(
1− ψ

η

)
φ (1− κ)L−κu ·G(t)κ (62)

∂H

∂Ls
= δλ

an(a− λ)

λ− 1
+ ηgb

·
ψ = ρψ − ∂H

∂Ls
= ρψ −

[
δλ̂
an(a− λ)

λ− 1
+ ηgb

]
⇒

·
ψ

ψ
= ρ−

[
δ
λ̂

ψ

an(a− λ)

λ− 1
+
η

ψ
gb

]
(63)

thus
·
C

C
=
ξ − ρ
σ

and
·
η
η
is a constant when

·
Lu
Lu

=
·
G
G
and

·
η
η

=
·
λ̂

λ̂
=

·
ψ
ψ
both hold, in which case

·
η

η
= ρ− gb − δ

λ̂

η

an+1 − an

λn+1 − λn
+

(
1− ψ

η

)
φ (1− κ)L−κu ·G(t)κ = ρ− ξ,

which implies

L−κu ·G(t)κ = −
ξ − gb − δ λ̂η

an+1−an
λn+1−λn(

1− ψ
η

)
φ (1− κ)

. (64)

By (11),
·
Ls
Ls
is constant if and only if

·
Ls
Ls

=
·
Lu
Lu

=
·
G
G
. Let gG ≡

·
G
G
. (12) implies

·
Lu
Lu

= gb ·
(

1 +
Ls
Lu

)
− Ls
Lu

·
Ls
Ls

gG = gb + (gb − gG)
Ls
Lu
,

which can be true if and only if gG = gb because Ls
Lu
> 0. Thus

·
Ls
Ls

=

·
Lu
Lu

=

·
G

G
= gb.
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(40) can be rewritten as

λ̂

η
= −φL1−κ

u · κG(t)κ−1

(
1− ψ

η

)
, (65)

which is used to substitute out λ̂
η
in equation (44), we obtain(

1− ψ

η

)
(1− κ)φ

[
G(t)

Lu(t)

]κ
= gb − ξ −

(
1− ψ

η

)
φκδ

an+1 − an

λn+1 − λn
[
G(t)

Lu(t)

]κ−1

. (66)

Since
·
η
η

=
·
λ̂

λ̂
=

·
ψ
ψ
, (43) and (41) jointly imply

δ
λ̂

η

an(a− λ)

λ− 1
+ gb = ξ

ψ

η
(67)

so we have three unknowns λ̂
η
, ψ
η
, G(t)
Lu(t)

and three equations (45)-(47).

Using the brutal force, we obtain

(1− κ)φ

[
G(t)

Lu(t)

]κ
=

an

λ− 1

{
(a− λ)− a− 1

λn

}
φκδ

[
G(t)

Lu(t)

]κ−1

− ξ,

which uniquely determines G(t)
Lu(t)

.
Denote this solution by χn. By (11), we have

Ls
Lu

=
φχκn
gb

,

and

ψ

η
=

gb − φL1−κ
u · κG(t)κ−1δ a

n(a−λ)
λ−1

ξ − φL1−κ
u · κG(t)κ−1δ a

n(a−λ)
λ−1

= 1 +
ξ − gb

(1− κ)φχκn + an

λ−1
a−1
λn
φκδχκ−1

n

λ̂

η
=

ξ ψ
η
− gb

δ a
n(a−λ)
λ−1

=

ξ

[
1− gb−ξ

(1−κ)φχκn+ an

λ−1
a−1
λn

φκδχκ−1
n

]
− gb

δ a
n(a−λ)
λ−1

= (ξ − gb) (λ− 1)
1 + ξ

(1−κ)φχκn+ an

λ−1
a−1
λn

φκδχκ−1
n

δan(a− λ)

(1− κ)φ

[
G(t)

Lu(t)

]κ
+

an

λ− 1

a− 1

λn
φκδ

[
G(t)

Lu(t)

]κ−1

=
an(a− λ)

λ− 1
φκδ

[
G(t)

Lu(t)

]κ−1

− ξ,
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m̂n =
log Lu(t̂n+1)+λn+1Ls(t̂n+1)

Lu(t̂n)+λnLs(t̂n)

gC
=

log Lu(t̂n+1)

Lu(t̂n)

1+λn+1 Ls(t̂n+1)

Lu(t̂n+1)

1+λn
Ls(t̂n)

Lu(t̂n)

gC

=

log egb(t̂n+1−t̂n)
1+λn+1 φχ

κ
n+1
gb

1+λn
φχκn
gb

gC
=

gbm̂n + log
1+λn+1 φχ

κ
n+1
gb

1+λn
φχκn
gb

gC
,

which implies

m̂n =

log
1+λn+1 φχ

κ
n+1
gb

1+λn
φχκn
gb

gC − gb
=

log

[
1 +

λn+1 φχ
κ
n+1
gb
−λn φχ

κ
n

gb

1+λn
φχκn
gb

]
gC − gb

=

log

[
1 +

λχκn+1
χκn

−1

1

λn
φχκn
gb

+1

]
gC − gb

When t ∈ [tbn+1, t
e
n+1], E0,n+1(C(t)) = λn+1Ls, and we have the following discounted-value

Hamiltonian:

H0,n+1 =
C(t)1−σ − 1

1− σ e−ρt + λ̂n+1

[
ξK − δ · λn+1Ls

]
+ ηn+1(λn+1Ls + Lu − C) (68)

∂H0,n+1

∂C
= 0⇒ C(t)−σe−ρt = ηn+1

−
·

λ̂n+1 =
∂H0,n+1

∂K
= ξλ̂n+1

thus we have
λ̂n+1(t) = λ̂n+1(tbn+1)e−ξ(t−t

b
n+1)

for any t ∈ [tbn+1, t
e
n+1]. In particular,

λ̂n+1(ten+1) = λ̂n+1(tbn+1)e−ξ(t
e
n+1−tbn+1),

Note that the optimality condition requires

λ̂n,n+1(tbn+1) = λ̂n+1(tbn+1);

λ̂n+1(ten+1) = λ̂n+1,n+2(ten+1),

therefore, the previous three equations jointly imply that

λ̂n+1,n+2(ten+1) = λ̂n,n+1(tbn+1)e−ξ(t
e
n+1−tbn+1)

which, together with (35), (36) and (37), yields

ten+1 − tbn+1 =
ln a

λ

ξ − ρ.

Thus the whole life cycle of industry n+1 consists of a rising period (ten, t
b
n+1), a peak period

[tbn+1, t
e
n+1], and a decline period (ten+1, t

b
n+2]. Its life span is equal to tbn+2 − ten. It is easy to

see that

tbn+1 − ten =
ln λn+1Ls+Lu

λnLs+Lu
ξ−ρ
σ

;∀n ≥ 1.
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To have sustainable consumption growth, we have to ensure that ξ > gb, in which case we
must have

·
E

E
>

·
Ls
Ls
≥

·
Lu
Lu
.

Suppose we have
·
Ls
Ls

=
·
Lu
Lu
in equilibrium, then (12) implies

·
Ls
Ls

=
·
Lu
Lu

= gb. (11) further
implies gG = gb. Everything becomes the same as before, and we reach a contradiction

because ξ > gb. Thus, it must be true that
·
Ls
Ls
6=

·
Lu
Lu
.

Suppose
·
Ls
Ls

>
·
Lu
Lu
, and Lu(t)

Ls(t)
→ 0, Lu(t) → 0 and gG > gb. So all labor is eventually

transformed into skilled labor, and the economy eventually grows like that in Ju, Lin and
Wang (2015). (40) and (42) jointly imply

·
η

η
= ρ−

[
gb − (1− κ)φL−κu ·G(t)κ

]
+ δφL1−κ

u · κG(t)κ−1 a
n+1 − an

λn+1 − λn
.

Suppose
·
η
η
,
·
Lu
Lu
and gG are all constant, then

−φL1−κ
u · κG(t)κ−1 =

λ

η

implies

(1− κ)(gu − gG) = ρ− ξ −
·
η

η

= −ξ + gb − (1− κ)φL−κu ·G(t)κ − δφL1−κ
u · κG(t)κ−1 a

n+1 − an

λn+1 − λn

which is a constant if and only if

− (1− κ)φL−κu ·G(t)κ − δφL1−κ
u · κG(t)κ−1 a

n+1 − an

λn+1 − λn

= φL1−κ
u G(t)κ−1

[
− (1− κ)L−1

u ·G(t)− δκ a
n+1 − an

λn+1 − λn
]

= φ

[
G(0)

Lu(0)

]κ−1

e(1−κ)(gu−gG)t

[
− (1− κ)

G(0)

Lu(0)
e−(gu−gG)t − δκ a

n+1 − an

λn+1 − λn
]

is a constant.
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Appendix
Figure A2 shows the counterpart for Fact 0 and Table A2 establishes the counterpart for Fact
1. The evidence of the counterpart for Facts 2 to 4 is provided below.

The counterpart for fact 2 and 3:
To further investigate the cross-country empirical evidence for industry dynamics, we extend
regression (1) to a cross-country regression:

Yitc = β0 + β1t+ β2t
2 + β3kitc · t+ β4Titc + β5Dic + β6GDPGRtc + εitc. (69)

where subscript c represents country. The results are summarized in Table A2.
We regress the peak time of a industry’s share (either employment share or output share) on
its capital-skilled labor ratio and capital-labor ratio. The results are in Table A3. Column
(1) and column (3) show that the peak time of an industry is positively correlated with its
capital-skilled labor ratio.
The findings are consistent with the results in Table 2 and Table 3, suggesting that the
patterns observed in the US are also true for other countries. Next we extend regression (2)
to a cross-country regression. The results for the cross-country counterpart of regression (2)
are summarized in Table A4.
The findings are consistent with the results in Table 4.

A different formulation of externality

Everything is identical to the previous case excep that (11) is replaced by

·
Ls = φL1−ν

s

[
L1−κ
u ·G(t)κ

]ν
G
ζ
(t), (70)

where ν ∈ [0, 1]. When 1−ν > 0, it captures the positive externality of existing skilled labor
on the training/ learning of unskilled labor.

max
C(t),G(t)

∫ ∞
0

C(t)1−σ − 1

1− σ e−ρtdt, where σ ∈ (0, 1),

subject to

·
K = ξK − δ · E(C(t))−G(t), (71)
·
Ls = φL1−ν

s

[
L1−κ
u ·G(t)κ

]ν
G
ζ
(t), (72)

·
Lu = gb · (Lu + Ls)−

·
Ls (73)

Decentralized equilibrium:

·
Lu = gb · (Lu + Ls)− φL1−ν

s

[
L1−κ
u ·G(t)κ

]ν
G
ζ
(t). (74)
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Suppose C(t) ∈ (λnLs + Lu, λ
n+1Ls + Lu) for any n ≥ 1. Establish the current-value

Hamiltonian as follows:

H =
C(t)1−σ − 1

1− σ +λ [ξK − δ · E(C(t))−G(t)]+η
[
gb · (Lu + Ls)− φL1−ν

s

[
L1−κ
u ·G(t)κ

]ν
G
ζ
(t)
]

First order conditions:

∂H

∂C
= 0⇒ C(t)−σ = λδ

∂E(C(t))

∂C(t)
⇒ −σ

·
C

C
=

·
λ

λ
(75)

∂H

∂G
= 0⇒ ηφκνL1−ν

s

[
L1−κ
u ·G(t)κ

]ν
G
ζ
(t) ·G(t)−1 = λ (76)

·
λ = ρλ− ∂H

∂K
= ρλ− λξ ⇒

·
λ

λ
= ρ− ξ

·
η = ρη − ∂H

∂Lu
⇒

·
η

η
= ρ−

[
gb − (1− κ)φL−κu ·G(t)κG

ζ
(t)
]

(77)

Part C. Human Capital Externality

Now we introduce externality in human capital investment. Everything is identical to Part
B except that (11) is replaced by the following:

·
Ls = φL1−κ

u ·G(t)κG
ζ
(t), (78)

where G(t) is the average household spending on human capital investment at time t and
the parameter ζ ≥ 0. Part B is a special case when ζ = 0. When ζ > 0, it captures the
positive externality in human capital investment, which is our analytical focus below.

Proposition 6. With positive externality in human capital investment ( ζ > 0), there exists
no Balanced Growth Path. Instead, on the transitional path the following is true

gC =
ξ − ρ
σ

,∀t ≥ t̂0

·
Ls
Ls

> gb >

·
Lu
Lu
,∀t (79)

Ls
Lu

=
φχκn
gb

,∀t ∈ (t̂n, t̂n+1] (80)

G(t)

Lu(t)
= χn,∀t ∈ (t̂n, t̂n+1) (81)

when industry n and industry n+ 1 coexist, (that is, t ∈ [t̂n, t̂n+1)), the following is true:

ξ+φ (1− κ)L−κu ·G(t)κ+ζ+(1− κ)

·
Lu
Lu

+(κ− 1 + ζ)

·
G

G
=

[
an(a− λ)

λ− 1
− an+1 − an

λn+1 − λn
]
δφL1−κ

u ·κG(t)κ−1+ζ

for ∀n ≥ 1. In the very long run, Ls
Lu+Ls

→ 1, and the economy converges to one with only
skilled labor and physical capital, which is characterized in Ju,Lin and Wang (2015).
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Proof: Substituting (96) into (12) yields

·
Lu = gb · (Lu + Ls)− φL1−κ

u ·G(t)κG
ζ
(t). (82)

Suppose C(t) ∈ (λnLs + Lu, λ
n+1Ls + Lu) for any n ≥ 1. Establish the current-value

Hamiltonian as follows:

H =
C(t)1−σ − 1

1− σ + λ [ξK − δ · E(C(t))−G(t)] + η
[
gb · (Lu + Ls)− φL1−κ

u ·G(t)κG
ζ
(t)
]

+ψφL1−κ
u ·G(t)κG

ζ
(t)

To characterize the decentralized equilibrium, we derive the following optimality conditions:

∂H

∂C
= 0⇒ C(t)−σ = λδ

∂E(C(t))

∂C(t)
⇒ −σ

·
C

C
=

·
λ

λ

∂H

∂G
= 0⇒ (ψ − η)φL1−κ

u · κG(t)κ−1G
ζ
(t) = λ (83)

·
λ = ρλ− ∂H

∂K
= ρλ− λξ ⇒

·
λ

λ
= ρ− ξ

·
ψ

ψ
= ρ−

[
δ
λ̂

ψ

an(a− λ)

λ− 1
+
η

ψ
gb

]
(84)

·
η = ρη − ∂H

∂Lu
⇒

·
η

η
= ρ− gb − δ

λ̂

η

an+1 − an

λn+1 − λn
+

(
1− ψ

η

)
φ (1− κ)L−κu ·G(t)κG

ζ
(t)(85)

Thus we still have
·
C

C
=
ξ − ρ
σ

.

Moreover, in equilibrium, we must have G(t) = G(t), so (100) can be rewritten as

·
η

η
= ρ−

[
gb −

(
1− ψ

η

)
(1− κ)φL−κu ·G(t)κ+ζ

]
− δ λ̂

η

an+1 − an

λn+1 − λn
, (86)

which is a constant if
·
η

η
=

·
ψ

ψ
=

·

λ̂

λ̂
= ρ− ξ (87)

and
·
Lu
Lu

=
(κ+ ζ)

κ

·
G

G
. (88)

Substituting G(t) = G(t) into (98) yields

λ̂

η
=

(
ψ

η
− 1

)
φL1−κ

u · κG(t)κ−1+ζ , (89)
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Substitute the above into (101) and use (102), we obtain

ξ − gb −
(
ψ

η
− 1

)
φ

[
(1− κ)L−κu ·G(t)κ+ζ + δ

an+1 − an

λn+1 − λn
L1−κ
u · κG(t)κ−1+ζ

]
= 0 (90)

By revoking (102) and (99), we obtain

δ
λ̂

η

an(a− λ)

λ− 1
+ gb =

ψ

η
ξ. (91)

(104) and (106) jointly imply

ψ

η
− 1 =

ξ − gb
δφL1−κ

u · κG(t)κ−1+ζ a
n(a−λ)
λ−1

− ξ
.

Substitute the above into (105), we obtain[
an(a− λ)

λ− 1
− an+1 − an

λn+1 − λn
]
δφL1−κ

u · κG(t)κ−1+ζ = φ (1− κ)L−κu ·G(t)κ+ζ + ξ (92)

φ (1− κ)L−κu ·G(t)κG
ζ
(t)+(1− κ)

·
Lu
Lu

+(κ− 1 + ζ) gG+ξ =

[
an(a− λ)

λ− 1
− an+1 − an

λn+1 − λn
]
δφL1−κ

u ·κG(t)κ−1G
ζ
(t)

Corallary: When κ− 1 + ζ = 0, the above equation becomes

φ (1− κ)L−κu ·G(t) + (1− κ)

·
Lu
Lu

+ ξ =

[
an(a− λ)

λ− 1
− an+1 − an

λn+1 − λn
]
δφL1−κ

u · κ

which implies

G(t) =

[
an(a−λ)
λ−1

− an+1−an
λn+1−λn

]
δφL1−κ

u · κ− ξ − (1− κ)
·
Lu
Lu

φ (1− κ)L−κu

or equivalently,

G(t)

Lu
=
δκ
[
an(a−λ)
λ−1

− an+1−an
λn+1−λn

]
(1− κ)

−

[
ξ + (1− κ)

·
Lu
Lu

]
φ (1− κ)L1−κ

u

,

which strictly increases over time if
·
Lu
Lu
> 0

Substituting G(t) = G(t) into (97) yields

·
Lu = gb · (Lu + Ls)− φL1−κ

u ·G(t)κ+ζ ,

so
·
Lu
Lu
is constant if and only if

·
Ls
Ls

=
·
Lu
Lu
because of (103). (96) implies

·
Ls
Ls

=
Lu
Ls
φL−κu ·G(t)κ+ζ (93)
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Let gG ≡
·
G
G
. (97) implies

·
Lu
Lu

= gb ·
(

1 +
Ls
Lu

)
− φL−κu ·G(t)κ+ζ ,

together with (93), implies

gG = gb
κ

κ+ ζ
,

and
·
Ls
Ls

=

·
Lu
Lu

= gb.

Let Λ ≡ φL−κu ·G(t)κ+ζ , so

Lu
Ls

=

·
Ls
Ls

φL−κu ·G(t)κ+ζ
=
gb
Λ
.

(107) implies

G(t)

Lu
=

[
an(a−λ)
λ−1

− an+1−an
λn+1−λn

]
δκΛ

(1− κ) Λ + ξ

(98), which contradicts that Λ is a constant because gG = gb
κ
κ+ζ

unless gG = gb = 0.

When gG = gb = 0, G(t) and Lu, Ls are all constant. In particular, when G(t) = Lu = 0,
the economy becomes identical to the economy characterized in Ju, Lin and Wang (2015).

(ψ − η)φL1−κ
u · κG(t)κ−1G

ζ
(t) = λ

·
ψ − ·

η

ψ − η + (1− κ)

·
Lu
Lu

+ (κ− 1 + ζ) gG =

·
λ

λ

ψ

ψ − η

·
ψ

ψ
−
·
η

η

η

ψ − η + (1− κ)

·
Lu
Lu

+ (κ− 1 + ζ) gG =

·
λ

λ[
an+1 − an

λn+1 − λn
− an(a− λ)

λ− 1

]
λ̂

ψ − ηδ + φ (1− κ)L−κu ·G(t)κG
ζ
(t) + (1− κ)

·
Lu
Lu

+ (κ− 1 + ζ) gG = −ξ[
an+1 − an

λn+1 − λn
− an(a− λ)

λ− 1

]
δφL1−κ

u · κG(t)κ−1G
ζ
(t) + φ (1− κ)L−κu ·G(t)κG

ζ
(t) + (1− κ)

·
Lu
Lu

+ (κ− 1 + ζ) gG = −ξ(94)

If
L1−κ
u G(t)κ−1G

ζ
(t) = Ξ = const

then

G(t)

Lu
=

[
an(a−λ)
λ−1

− an+1−an
λn+1−λn

]
δφκΞ− ξ

φ (1− κ) Ξ
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gG =
− (1− κ)

(κ− 1 + ζ)

·
Lu
Lu

=
(1− κ)

(1− κ− ζ)

·
Lu
Lu

Suppose
·
Lu
Lu
6= 0, then gG 6=

·
Lu
Lu
, contradicting the fact that Ξ is a constant. Thus we must

have
·
Lu
Lu

= 0 and G(t) must be a constant. In that case,[
an+1 − an

λn+1 − λn
− an(a− λ)

λ− 1

]
δφL1−κ

u · κG(t)κ−1G
ζ
(t) + φ (1− κ)L−κu ·G(t)κG

ζ
(t) = −ξ

·
Ls = φL1−κ

u ·G(t)κG
ζ
(t),

·
Ls = gb · (Lu + Ls)

gb · (Lu + Ls) = φL1−κ
u ·G(t)κG

ζ
(t)

so gb has to be zero and Ls is a constant. Moreover, Lu = 0 or G = 0.

Suppose Lu = 0.

]]

Suppose
L1−κ
u G(t)κ−1G

ζ
(t) = Ξ(t),

define

gΞ(t) ≡
·
Ξ(t)

Ξ(t)
,

then

(1− κ)

·
Lu
Lu

+ (κ− 1 + ζ) gG = gΞ(t)

gG −
·
Lu
Lu

=
gΞ(t)− ζgG

(κ− 1)
(95)

substituting it into (94) yields

G(t)

Lu
=

[
an(a−λ)
λ−1

− an+1−an
λn+1−λn

]
κδφΞ(t)− [ξ + gΞ(t)]

(1− κ)φΞ(t)
,

which increases over time if and only if ξ+gΞ(t)
Ξ(t)

decreases over time, or equivalently,

g′Ξ(t)− [ξ + gΞ(t)] gΞ(t) < 0
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gΞ(t) < ζgG

because of (95).

In particular, when κ− 1 + ζ = 0, we have gΞ(t) = (1− κ)
·
Lu
Lu
, so gΞ(t) < ζgG is reduced to

·
Lu
Lu

< gG.

=====================

L−κu ·G(t)κ+ζ

Λ ≡ L−κu ·G(t)κ+ζ

·
Λ

Λ
= gΞ(t)−

·
Lu
Lu

+ gG

·
Lu
Lu

= gb ·
(

1 +
Ls
Lu

)
− φΛ,

Ls
Lu

·
Ls
Ls

= φΛ

In equilibrium, we have
·
Ls
Ls
> gb >

·
Lu
Lu
, both Ls

Lu
and Λ increase over time,

·
Lu
Lu
is positive at the

begining and eventually becomes negative (that is, gb ·
(

1 + Ls
Lu

)
> φΛ when t is suffi ciently

small and then the opposite is true afterwards)...

gb ·
(

1 +
Ls
Lu

)
> φΛ

φΛ >

·
Ls
Ls

(
φΛ

gb
− 1

)
·
Ls
Ls

>

 ·
Ls
Ls

gb
− 1

φΛ

When
·
Lu
Lu

= 0, we have
Ls
Lu

=
φΛ

gb
− 1

and
·
Ls
Ls

=
φΛgb
φΛ− gb

> gb,
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which means that φΛ > gb and

gb =

·
Ls +

·
Lu

Ls + Lu
=

·
Ls
Ls

Ls
Ls + Lu

+

·
Lu
Lu

Lu
Ls + Lu

·
Lu
Lu

= gb ·
(

1 +
Ls
Lu

)
− φL−κu ·G(t)κ+ζ ,

L1−κ
u G(t)κ−1G

ζ
(t) = Ξ(t),

·
Ls
Ls

Ls
Lu

= φL−κu ·G(t)κ+ζ =

[
an(a−λ)
λ−1

− an+1−an
λn+1−λn

]
κδφΞ(t)− [ξ + gΞ(t)]

(1− κ)

Benevolent social planner problem taking into account the human capital externality:
(98) is changed to

∂H

∂G
= 0⇒ (ψ − η)φL1−κ

u · (κ+ ζ)G(t)κ+ζ−1 = λ

All the growth rates on the BGP are still the same as in the case when human capital
externality is not internalized in the decentralized decisions. The major difference is the
level effect instead of speed effect.

Part C. Human Capital Externality

Now we introduce externality in human capital investment. Everything is identical to Part
B except that (11) is replaced by the following:

·
Ls = φ

[
L1−κ
u ·G(t)κ

]1−ζ
G
ζ
(t), (96)

where G(t) is the average household spending on human capital investment at time t and
the parameter ζ ≥ 0. Part B is a special case when ζ = 0. When ζ > 0, it captures the
positive externality in human capital investment, which is our analytical focus below.

·
Lu = gb · (Lu + Ls)− φ

[
L1−κ
u ·G(t)κ

]1−ζ
G
ζ
(t). (97)

Suppose C(t) ∈ (λnLs + Lu, λ
n+1Ls + Lu) for any n ≥ 1. Establish the current-value

Hamiltonian as follows:

H =
C(t)1−σ − 1

1− σ + λ [ξK − δ · E(C(t))−G(t)] + η
[
gb · (Lu + Ls)− φ

[
L1−κ
u ·G(t)κ

]1−ζ
G
ζ
(t))
]

+ψφ
[
L1−κ
u ·G(t)κ

]1−ζ
G
ζ
(t)
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To characterize the decentralized equilibrium, we derive the following optimality conditions:

∂H

∂C
= 0⇒ C(t)−σ = λ̂δ

∂E(C(t))

∂C(t)
⇒ −σ

·
C

C
=

·

λ̂

λ̂
∂H

∂G
= 0⇒ (ψ − η)φ (1− ζ)

[
L1−κ
u ·G(t)κ

]−ζ
G
ζ
(t)κL1−κ

u ·G(t)κ−1 = λ̂ (98)

·

λ̂ = ρλ̂− ∂H

∂K
= ρλ̂− λ̂ξ ⇒

·

λ̂

λ̂
= ρ− ξ

·
ψ

ψ
= ρ−

[
δ
λ̂

ψ

an(a− λ)

λ− 1
+
η

ψ
gb

]
(99)

·
η = ρη − ∂H

∂Lu
⇒

·
η

η
= ρ− gb − δ

λ̂

η

an+1 − an

λn+1 − λn
+

(
1− ψ

η

)
φ (1− κ)L−κu (1− ζ)

[
L1−κ
u ·G(t)κ

]−ζ ·G(t)κG
ζ
(t)(100)

Thus we still have
·
C

C
=
ξ − ρ
σ

.

Moreover, in equilibrium, we must have G(t) = G(t), so (100) can be rewritten as

·
η

η
= ρ−

[
gb −

(
1− ψ

η

)
φ (1− κ) (1− ζ)L−ζ(1−κ)−κ

u ·G(t)κ+ζ−ζκ
]
− δ λ̂

η

an+1 − an

λn+1 − λn
, (101)

which is a constant if
·
η

η
=

·
ψ

ψ
=

·

λ̂

λ̂
= ρ− ξ (102)

and
·
Lu
Lu

=

·
G

G
. (103)

Substituting G(t) = G(t) into (98) yields(
ψ

η
− 1

)
φκ (1− ζ)Gζ+κ−1−κζL(1−κ)(1−ζ)

u =
λ̂

η
, (104)

Substitute the above into (101) and use (102), we obtain

ξ−gb+
(

1− ψ

η

)
φ (1− ζ)

[
(1− κ)L−ζ(1−κ)−κ

u ·G(t)κ+ζ−ζκ + δκGζ+κ−1−κζL(1−κ)(1−ζ)
u

an+1 − an

λn+1 − λn
]

= 0

(105)

By revoking (102) and (99), we obtain

δ
λ̂

η

an(a− λ)

λ− 1
+ gb =

ψ

η
ξ. (106)
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(104) and (106) jointly imply

ψ

η
− 1 =

ξ − gb
δ a

n(a−λ)
λ−1

φκ (1− ζ)Gζ+κ−1−κζL
(1−κ)(1−ζ)
u − ξ

Substitute the above into (105), we obtain

ξ−gb−
ξ − gb

δ a
n(a−λ)
λ−1

φκ (1− ζ)Gζ+κ−1−κζL
(1−κ)(1−ζ)
u − ξ

φ (1− ζ)

[
(1− κ)L−ζ(1−κ)−κ

u ·G(t)κ+ζ−ζκ + δκGζ+κ−1−κζL(1−κ)(1−ζ)
u

an+1 − an

λn+1 − λn
]

= 0

when ξ > gb, we have[
an(a− λ)

λ− 1
− an+1 − an

λn+1 − λn
]
δκ

(
G

Lu

)−(1−κ)(1−ζ)

= (1− κ)

(
G

Lu

)κ+ζ−ζκ

+
ξ

φ (1− ζ)
(107)

Observe that there exists a unique solution to the above equation, and G
Lu
has the following

properties:

∂

∂ξ

(
G

Lu

)
< 0;

∂

∂δ

(
G

Lu

)
> 0;

∂

∂n

(
G

Lu

)
> 0;

∂

∂φ

(
G

Lu

)
> 0;

∂

∂ζ

(
G

Lu

)
< 0;

∂

∂a

(
G

Lu

)
> 0

·
Lu
Lu

= gb ·
(

1 +
Ls
Lu

)
− φ [L1−κ

u ·G(t)κ]
1−ζ

G
ζ
(t)

Lu

= gb ·
(

1 +
Ls
Lu

)
− φ

(
G

Lu

)κ(1−ζ)+ζ

·
Ls
Ls

=
Lu
Ls
φ

[L1−κ
u ·G(t)κ]

1−ζ
G
ζ
(t)

Lu

=
Lu
Ls
φ

(
G

Lu

)κ(1−ζ)+ζ

= gb ·
(

1 +
Ls
Lu

)
− φ

(
G

Lu

)κ(1−ζ)+ζ

φ

gb

(
G

Lu

)κ(1−ζ)+ζ

=
Ls
Lu

To characterize the social optimum, we have

H =
C(t)1−σ − 1

1− σ + λ̂ [ξK − δ · E(C(t))−G(t)] + η
[
gb · (Lu + Ls)− φ

[
L1−κ
u ·G(t)κ

]1−ζ
G
ζ
(t))
]

+ψφ
[
L1−κ
u ·G(t)κ

]1−ζ
G
ζ
(t)
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Substituting G(t) = G(t) into the above yields

H =
C(t)1−σ − 1

1− σ + λ̂ [ξK − δ · E(C(t))−G(t)] + η
[
gb · (Lu + Ls)− φL(1−κ)(1−ζ)

u ·G(t)κ(1−ζ)+ζ]
+ψφL(1−κ)(1−ζ)

u ·G(t)κ(1−ζ)+ζ .

All the optimal conditions remain the same as the case of laissez affaire market equilibrium
except that (98) becomes the following

(ψ − η)φ [κ (1− ζ) + ζ]L(1−κ)(1−ζ)
u G(t)κ(1−ζ)+ζ−1 = λ̂ (108)

except into (98) yields

∂H

∂C
= 0⇒ C(t)−σ = λ̂δ

∂E(C(t))

∂C(t)
⇒ −σ

·
C

C
=

·

λ̂

λ̂
∂H

∂G
= 0⇒ (ψ − η)φ [κ (1− ζ) + ζ]L(1−κ)(1−ζ)

u G(t)κ(1−ζ)+ζ−1 = λ̂ (109)

·

λ̂ = ρλ̂− ∂H

∂K
= ρλ̂− λ̂ξ ⇒

·

λ̂

λ̂
= ρ− ξ

·
ψ

ψ
= ρ−

[
δ
λ̂

ψ

an(a− λ)

λ− 1
+
η

ψ
gb

]
(110)

·
η = ρη − ∂H

∂Lu
⇒

·
η

η
= ρ− gb − δ

λ̂

η

an+1 − an

λn+1 − λn
+

(
1− ψ

η

)
φ (1− κ)L−κu (1− ζ)

[
L1−κ
u ·G(t)κ

]−ζ ·G(t)κGζ(t)(111)

Thus we still have

ξ − gb = δ
λ̂

η

an+1 − an

λn+1 − λn
+

(
1− ψ

η

)
φ (1− κ)L−κu (1− ζ)

[
L1−κ
u ·G(t)κ

]−ζ ·G(t)κGζ(t)

(
ψ

η
− 1

)
φ [κ (1− ζ) + ζ]Gζ+κ−1−κζL(1−κ)(1−ζ)

u =
λ̂

η
, (112)

substituting the above into (100) yields

·
η

η
= ρ− gb − δ

λ̂

η

an+1 − an

λn+1 − λn
+

(
1− ψ

η

)
φ (1− κ)L−κu (1− ζ)

[
L1−κ
u ·G(t)κ

]−ζ ·G(t)κGζ(t)

·
η

η
= ρ− gb − δ

λ̂

η

an+1 − an

λn+1 − λn
−

λ̂
η

φ [κ (1− ζ) + ζ]Gζ+κ−1−κζL
(1−κ)(1−ζ)
u

φ (1− κ)L−κu (1− ζ)
[
L1−κ
u ·G(t)κ

]−ζ ·G(t)κGζ(t)
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Using (102) , we further obtain

ξ − gb =
λ̂

η

[
δ
an+1 − an

λn+1 − λn
+

(1− κ) (1− ζ)G(t)

[κ (1− ζ) + ζ]Lu

]
ξ − gb[

δ a
n+1−an
λn+1−λn + (1−κ)(1−ζ)G(t)

[κ(1−ζ)+ζ]Lu

] =
λ̂

η

ψ

η
=

ξ − gb
φ [κ (1− ζ) + ζ]Gζ+κ−1−κζL

(1−κ)(1−ζ)
u

[
δ a

n+1−an
λn+1−λn + (1−κ)(1−ζ)G(t)

[κ(1−ζ)+ζ]Lu

] + 1

On the other hand,

ψ

η
=

[
δ λ̂
η
an(a−λ)
λ−1

+ gb

]
ξ

thus

ξ − gb
φ [κ (1− ζ) + ζ]Gζ+κ−1−κζL

(1−κ)(1−ζ)
u

[
δ a

n+1−an
λn+1−λn + (1−κ)(1−ζ)G(t)

[κ(1−ζ)+ζ]Lu

] + 1 =

[
δ λ̂
η
an(a−λ)
λ−1

+ gb

]
ξ

ξ − gb
φ [κ (1− ζ) + ζ]Gζ+κ−1−κζL

(1−κ)(1−ζ)
u

[
δ a

n+1−an
λn+1−λn + (1−κ)(1−ζ)G(t)

[κ(1−ζ)+ζ]Lu

] =

δ ξ−gb[
δ a
n+1−an
λn+1−λn+

(1−κ)(1−ζ)G(t)
[κ(1−ζ)+ζ]Lu

] an(a−λ)
λ−1

+ gb − ξ

ξ

ξ

φ [κ (1− ζ) + ζ]Gζ+κ−1−κζL
(1−κ)(1−ζ)
u

= δ
an(a− λ)

λ− 1
− δ a

n+1 − an

λn+1 − λn
− (1− κ) (1− ζ)G(t)

[κ (1− ζ) + ζ]Lu

ξ

φ [κ (1− ζ) + ζ]

[
G

Lu

](1−κ)(1−ζ)

= δ

[
an(a− λ)

λ− 1
− an+1 − an

λn+1 − λn
]
− (1− κ) (1− ζ)G(t)

[κ (1− ζ) + ζ]Lu

ξ

φ [κ (1− ζ) + ζ]Gζ+κ−1−κζL
(1−κ)(1−ζ)
u

= δ

[
an(a− λ)

λ− 1
− an+1 − an

λn+1 − λn
]
− (1− κ) (1− ζ)G(t)

[κ (1− ζ) + ζ]Lu

From (rr) and(ff), we obtain

ξ−gb+
(

1− ψ

η

)
φ (1− ζ)

[
(1− κ)L−ζ(1−κ)−κ

u ·G(t)κ+ζ−ζκ + δκGζ+κ−1−κζL(1−κ)(1−ζ)
u

an+1 − an

λn+1 − λn
]

= 0

(113)
which implies that

ξ − gb
φ (1− ζ)

[
(1− κ)L

−ζ(1−κ)−κ
u ·G(t)κ+ζ−ζκ + δκGζ+κ−1−κζL

(1−κ)(1−ζ)
u

an+1−an
λn+1−λn

] =

(
ψ

η
− 1

)
thus

λ̂

η
=

(
ψ

η
− 1

)
φ [κ (1− ζ) + ζ]Gζ+κ−1−κζL(1−κ)(1−ζ)

u

=
[κ (1− ζ) + ζ]Gζ+κ−1−κζL

(1−κ)(1−ζ)
u

(1− ζ)
[
(1− κ)L

−ζ(1−κ)−κ
u ·G(t)κ+ζ−ζκ + δκGζ+κ−1−κζL

(1−κ)(1−ζ)
u

an+1−an
λn+1−λn

] (ξ − gb)
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ξ − gb =

λ̂
η

[κ (1− ζ) + ζ]Gζ+κ−1−κζL
(1−κ)(1−ζ)
u

(1− ζ)

[
(1− κ)L−ζ(1−κ)−κ

u ·G(t)κ+ζ−ζκ + δκGζ+κ−1−κζL(1−κ)(1−ζ)
u

an+1 − an

λn+1 − λn
]

(114)

ξ − gb =

[κ(1−ζ)+ζ]Gζ+κ−1−κζL
(1−κ)(1−ζ)
u

(1−ζ)
[
(1−κ)L

−ζ(1−κ)−κ
u ·G(t)κ+ζ−ζκ+δκGζ+κ−1−κζL

(1−κ)(1−ζ)
u

an+1−an
λn+1−λn

] (ξ − gb)

[κ (1− ζ) + ζ]Gζ+κ−1−κζL
(1−κ)(1−ζ)
u

(1− ζ)

[
(1− κ)L−ζ(1−κ)−κ

u ·G(t)κ+ζ−ζκ + δκGζ+κ−1−κζL(1−κ)(1−ζ)
u

an+1 − an

λn+1 − λn
]

(115)

1 =

[κ(1−ζ)+ζ]Gζ+κ−1−κζL
(1−κ)(1−ζ)
u

(1−ζ)
[
(1−κ)L

−ζ(1−κ)−κ
u ·G(t)κ+ζ−ζκ+δκGζ+κ−1−κζL

(1−κ)(1−ζ)
u

an+1−an
λn+1−λn

]
[κ (1− ζ) + ζ]Gζ+κ−1−κζL

(1−κ)(1−ζ)
u

(1− ζ)

[
(1− κ)L−ζ(1−κ)−κ

u ·G(t)κ+ζ−ζκ + δκGζ+κ−1−κζL(1−κ)(1−ζ)
u

an+1 − an

λn+1 − λn
]

(116)
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Appendix 
 

 

Figure 1:  Positive correlation between skill premium and logarithm of capital to skilled labor ratio(USA:1958-
2016). The skilled labor is measured by the non-production workers and the unskilled-labor is measured by the 
production workers. Capital and Labor are measured in 1$m and 1000s. Date source: NBER-CES manufacturing 
database. 

 

Figure 1A: Positive correlation between skill premium and logarithm of capital to skilled labor ratio(USA:1995-
2009).  In WIOD (SEA) skill type is defined on the basis of the level of educational attainment of the worker. We 
define the labor force with first stage of tertiary education or above as skilled labor, and the labor force with post-
secondary non-tertiary education or below as unskilled labor. See Table 6 for more classification details. Capital is 
measured in millions of Dollars (1995=100), skilled labor is measured in millions of hours. Date source: WIOD 
Socioeconomic Accounts (SEA) manufacturing database. 
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Figure 2:  Physical capital to skilled labor ratio(USA:1958-2011). The skilled labor is measured by the non-
production workers and the unskilled-labor is measured by the production workers. Capital and Labor are measured 
in 1$m and 1000s.Date source: NBER-CES manufacturing database. 
 

 
 

Table 1. Cross-industry heterogeneity in Capital-Skilled labor Ratio in the USA 
Year Mean Std. Dev.  Min Max Max/Min  

1958 308.736 285.915 24.730 1638.108 66.240 

1968 324.607 318.161 23.378 1931.087 82.603 

1978 365.970 387.591 20.615 2182.396 105.865 

1988 377.415 428.646 14.807 2862.787 193.340 

1998 417.286 521.639 37.641 3629.678 96.429 

2008 459.676 550.501 55.355 3856.926 69.676 

2016 485.734 602.188 64.502 4388.876 68.043 

Note: Redefining the industries according to the capital-skilled labor ratios, we first rank all the 27751 observations 
by capital-skilled labor ratios in each firm in an increasing order, and then equally divide all these observations into 
99 bins. Capital and skilled labor are measured in 1$m and 1000s. Date source: NBER-CES manufacturing database. 

 

 

 

 



 

Table 1A. Cross-industry heterogeneity in Capital-Skilled labor Ratio in the USA (originally 
industries) 

Year Mean Std. Dev.  Min Max Max/Min  

1958 180.972 195.641 2.733 1638.108 599.381 

1968 227.514 227.284  8.695 1931.087 222.092 

1978 292.623 300.318 14.140 2425.79 171.556 

1988 369.154 426.240 14.807 3845  259.692 

1998 461.395 559.745 37.641 5657.706 150.307 

2008 675.076 769.884 53.390 6301.445 118.027 

2016 756.885 952.820 64.502 9294.75 144.100 

Note: Capital and skilled labor are measured in 1$m and 1000s. Date source: NBER-CES manufacturing database 

 

HP- filtered employment shares of three typical newly-defined “Industries” 

 
Figuer 3： HP- filtered employment shares of three typical “Industries” (Newly Defined) in The USA(1958-
2016).The horizontal axis is the year, and the vertical axis is the employment share of “Industry 1 (50 and 99)” in all 
manufacturing industries. If there is a missing value in the constructed time series for a certain year, that missing value 
is replaced by the simple average of the observations immediately before and after that year. The HP filter parameter 
λ is set to 100.  

 
 
 
 
 
 
 
 
 
 
 



 
Table 2. Cross-industry heterogeneity in Capital-Skilled labor Ratio in the USA 

 
Note: t;k;T and GDPGR represent year, average capital-skilled labor ratio, labor productivity and GDP growth rate, 
respectively. Standard errors in parentheses. **Indicates significance at 5% level, ***Indicates significance at 1% 
level.  

 
 

Table 3. Peak time of industries in The USA  

 

In Table 3, standard errors in parentheses. ***Denotes significance at the 1% level.  

 
 

Dependent variable Employment share*10000 Value-added share*10000 
(1) (2) (3) (4) 

t 1.547∗∗∗ 1.547∗∗∗ 45.711∗∗∗ 45.710∗∗∗ 
 0.312 0.312 18.269  18.269 
t2 −0.0004∗∗∗ −0.0004∗∗∗ −0.012∗∗∗ −0.012 ∗∗∗ 
 0.0001 0.0001 0.005 0.005 
t*k 0.0001∗∗∗ 0.0001∗∗∗ 0.003∗∗∗ 0.003∗∗∗ 
k −0.100∗∗∗ −0.099∗∗∗ −6.436∗∗∗ −6.429∗∗∗ 
 0.007 0.007 0.390 0.391 
T 0.0004 0.0004 0.667∗∗∗ 0.667∗∗∗ 
 0.001 0.001 0.029 0.029 
GDPGR  0.006 0.006 -0.452 -0.452 
 0.009 0.009 0.542 0.542 
Constant −1505.222 ∗∗∗ −1508.14 ∗∗∗ −42022.2∗∗ −42045.82∗∗ 
 309.340 309.321 18126.74 18125.65 
Industry dummies yes yes yes yes 
Observation 5416 5416 5416 5416 
R-squared 0.16 0.16 0.34 0.34 

Dependent variable Peak time of  Peak time of  
Employment share*10000 Value-added share*10000 

(1) (2) (3) (4) 
Capital-skilled labor ratio 0.0001∗∗∗  0.172∗∗∗  
 6.32e-13   7.77e-10   
Capital expenditure ratio  

 

 0.0001∗∗∗  0.003 ∗∗∗ 
  4.33e-08   6.22e-06  
Constant 0.00002 ∗∗∗ 0.294 ∗∗∗ 0.052∗∗∗ 62.794∗∗∗ 
 1.73e-10  2.85e-09  2.54e-07  4.11e-07  
R-squared 1 0.9 1 0.9 
Observation 99 99 99 99 



Table 4. Cross-industry heterogeneity in Capital-Skilled labor Ratio in the USA  

 
Note: Congruence term is the absolute value of a normalized difference newly-defined sector is capital-skilled labor 
ratio and the aggregate capital-skilled labor ratio in manufacturing sectors at year t. The skilled labor is represented 
by their non-production workers. T is the labor productivity of industries i of year t. In Table 4, standard errors in 
parentheses. ***Indicates significance at 1% level.   
 
 

 Table 5. Asymmetric Duration fact in The USA  
 𝜃𝜃 P  

 

P  
 Newly-defined industries 

 

Original 6-digit industries 
5 0.829 0.810 
10 0.833 0.808 
15 0.828 0.806 
20 0.858 0.803 
25 0.909 0.803 
30 0.882 0.819 
35 0.858 0.790 
40 0.909 0.802 
45 0.875 0.814 
50 0.800 0.825 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Dependent variable Value-added share 
(1) (2) (3) (4) 

Congruence term  −2.365∗∗∗ −2.463∗∗∗ −0.153∗∗∗ −0.218∗∗∗ 
 0.234 0.246 0.013  0.023 

T  

 

0.030∗∗∗ 0.020∗∗∗ 0.003∗∗∗ 0.004∗∗∗ 

 0.002 0.002  0.0001 0.0001  
Constant 53.180 ∗∗∗ 23.622 ∗∗∗ 0.806∗∗∗ 1.007∗∗∗ 
 2.983 1.622  0.321  0.364  

Industry dummies  yes yes yes yes 
Observation 5416 5335 27367 21112 
R-squared 0.24 0.22 0.82 0.82 



Table 6. Definition of skills  
Skill Type 

 

1997 ISCED Level 1997 ISCED Level description 
Low 1 Primary education or first stage of basic education  

Low 2 Lower secondary or second stage of basic education  

Low 3 (Upper) secondary education  

Low 4 Post secondary non-tertiary education   

High 5 First stage of tertiary education   

High 6 Second stage of tertiary education  

 
Source: ISCED, http://www.uis.unesco.org/Education/Pages/  

 

Table 7: Quantities in Static Equilibrium 

 
 
 
 
 
 

 
 
 

      Figuer 4： Static Equilibrium 
 



 

Table 8: Prices and Factor Income Shares in Static Equilibrium 

 
 
 
 

 
 

 
 

             Figuer 5： Dynamic  Equilibrium 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 

 
Evidence from cross-country data  

 
Figure 1B shows the relationship between capital-skilled labor ratio and skill premium in six countries. A 
positive correlation between skill premium and the ratio of capital to skilled labor is discernible.    
 
Figure1B: Capital-Skilled Labor Ratio and Skill Premium in Six Countries: 1995-2009 

 
Note: Log Capital-Skilled Labor Ratio vs. log Skill Premium. Capital is measured in millions of Dollars (1995=100), 
skilled Labor is measured in millions of hours. Countries: Denmark(1995-2007), Czech Republic(1995-2007),  United 
Kingdom(1995-2007), Japan(1995-2009),  United States(1995-2009)  and Netherlands(1995-2007).Data source: 
WIOD Socio-Economic Accounts (SEA) manufacturing database. 

Table 1B shows that there exists tremendous cross-industry heterogeneity in the capital-skilled labor ratio 
in six countries. 
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Country  Year  Mean  Std. Dev.  Min  Max  Max/Min  
Czech Republic  1995  6200.321  4670.369  1636.397  17870.76  10.921  

2007  11721.6  15534.95  3546.543  63806.07  17.991 
United Kingdom  1995  148.262  58.32756  88.45324  284.9299  3.22  

2007  136.0983  39.85463  96.34043  224.1298  2.326  
Denmark  1995  4788.203  9139.143  1111.355  36293.59  32.747  

2007  4488.754  7451.816  1496.27  30203.3  20.186  
Japan  1995  128253.7  280000  27705.99  1097037  39.600  

2009  210491.3  404641.6  54544.62  1609794  29.513  
1995  620.011  698.2273  164.7473  2876.205  17.458  



Table 1B Cross-industry heterogeneity in Capital-Skilled labor Ratio Cross countries: 1995-2009 

Note: Capital is measured in millions of national currency (1995=100), and the skilled labor is measured in millions 
of hours. 14 industries: Food, beverages and tobacco (15&16);Textiles and textile (17&18);Leather, leather and 
footwear (19);Wood and of wood and Cork (20);Pulp, Paper, Printing and Publishing (21&22);Coke, refined 
petroleum and nuclear fuel (23); Chemicals and chemical (24);Rubber and plastics (25); Other non-Metallic Mineral 
(26);Basic metals and fabricated metal (27&28);Machinery, Nec (29);Electrical and optical equipment 
(30&33);Transport Equipment (34&35);Manufacturing Nec; Recycling (36&37).Data source: WIOD Socio-
Economic Accounts (SEA) manufacturing database.  

 
To further investigate the cross-country empirical evidence for industry dynamics, we extend regression 
(1) to a cross-country regression: 

𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖=𝛽𝛽0 + 𝛽𝛽1𝑡𝑡 + 𝛽𝛽2𝑡𝑡2 + 𝛽𝛽3.𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖. 𝑡𝑡+𝛽𝛽4.𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖 + 𝛽𝛽5.𝐷𝐷𝑖𝑖𝑖𝑖 + 𝛽𝛽6𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑡𝑡𝑡𝑡 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖     

where subscript c represents a country index. The results are summarized in Table2A. 

 
Table 2A. Hump-shaped pattern of industrial dynamics cross countries: 1995-2009 

Dependent variable Employment share(1) *1000  Employment share（2）*1000 
(1) (2)  (3) (4) 

 

 

 

 

 

 

  

 

 

 
 (5.597) (5.595)  (5.597) (5.204) 
t2 -0.003** -0.003**  -0.001** -0.003** 
 (0.001) (0.001)  (0.001) (0.001) 
t*k 3.92e-07*** 

 

3.92e-07*** 

 

 1.00e-07*** 
 

3.92e-07*** 

 
k -0.001*** 

 

-0.001*** 

 

 -0.001*** 

  

0.001*** 

 
T 0.004** 0.004**  0.004** 0.004** 
 (0.002) (0.002)  (0.002) (0.002) 
GDPGR 0.042*** 0.065***  0.042*** 0.042*** 
 (0.012) (0.011)  (0.012) (0.012) 
Constant -13622.85** -13622.85**  -13718.93*** -13622.85** 
 (5600.983) (5598.351)  (5600.983) (5598.351) 
Country*Industry dummies yes yes  yes yes 
Observation 992 992  992 992 
R-squared 0.973 0.973  0.973 0.973 

Note: t; k; T and GDPGR represent Year, average capital-skilled labor ratio or capital labor ratio of an industry, Labor 
productivity of an industry, and GDP growth rate for each specific country, respectively. Employment share (1) is the 
share of hours worked by persons engaged, employment share (2) is the share of persons engaged. Countries: 
Denmark(1995-2007), Czech Republic(1995-2007),  United Kingdom(1995-3007), Japan(1995-2009),  United 
States(1995-2009)  and Netherlands(1995-2007).Data source: WIOD Socio-Economic Accounts (SEA) (1995–
2009).* p < 0.5, ** p < 0.05, *** p < 0.005. 

Netherlands  2007  413.3582  412.5819  97.98441  1715.209  17.505  
United States  1995  246.5035  152.9504  131.3463  723.6995  5.05  

2009  328.9353  201.7134  192.9896  992.5255  5.143  



 

We regress the peak time of a industry's share (either employment share or output share) on its capital-
skilled labor ratio and capital-labor ratio. The results are in Table 3A. Column (1) and column (3) show 
that the peak time of an industry is positively correlated with its capital-skilled labor ratio. Column (2) 
and column (4) confirm the finding in Ju, Lin and Wang (2015). 

Table3A. Hump-shaped pattern of industrial dynamics cross countries: 1995-2009 

Dependent variable Peak time of Employment 
 Share(1) 

 Peak time of Employment 
 Share(2) 

(1) (2)  (3) (4) 
 
Capital-skilled labor ratio 

 
7.14e-12*** 
(1.43e-14) 

 
 

  
7.15e-12*** 
(5.53e-15) 

 
 

Capital-labor ratio   6.70e-11***   6.67e-12*** 
  (7.84e-15)   (1.31e-14) 
Constant 0.056*** 

 (1.49e-10) 
0.055*** 
(1.28e-10) 

 0.056*** 
 (9.86e-11) 

0.055*** 
(1.22e-10) 

R-squared 0.999 1.000  0.999 0.999 
Observation 84 84  84 84 

Note: Employment share (1) is the share of hours worked by persons engaged, employment share (2) is the share of 
persons engaged.Countries: Denmark(1995-2007), Czech Republic(1995-2007),  United Kingdom(1995-3007), 
Japan(1995-2009),  United States(1995-2009)  and Netherlands(1995-2007).Data source: WIOD Socio-Economic 
Accounts (SEA) (1995–2009).Standard errors in parentheses * p < 0.05, ** p < 0.01, *** p < 0.001 

The findings are consistent with the results in Table2 and Table 3, which suggests that the industry 
dynamics patterns observed in the US are actually quite general and also true for other countries. 

Next we extend regression (2) to a cross-country regression: 

𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖=𝛽𝛽0 + 𝛽𝛽1 �
𝐾𝐾𝑖𝑖𝑖𝑖𝑖𝑖 𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠⁄ −𝐾𝐾𝑡𝑡𝑡𝑡 𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠⁄

𝐾𝐾𝑡𝑡𝑡𝑡 𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠⁄ �+𝛽𝛽2𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖 + 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ∗ 𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑦𝑦𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝜀𝜀𝑖𝑖𝑖𝑖 ,   (4) where subscript c 

represents a country index. The results are summarized in Table 4A. 

Table4A. Congruence facts cross countries: 1995-2009 
Dependent variable Value-added share *1000  Employment share*1000 

（1）  （2） 
 

   
 

 
  

   (0.044)  (0.015) 
T 0.040***  0.001* 
 (0.001)  (0.0004) 
Constant  5.429***  8.203*** 
 (0.687)  (0.232) 
Country*Industry 
d i  

yes  yes 
Observation 1160  1160   
R-squared 0.840  0.981 

Note: Congruence term is the absolute value of a normalized difference sector i’s capital-skilled labor ratio and the 
aggregate capital-skilled labor ratio in manufacturing sectors in country c at year t. 𝑇𝑇𝑖𝑖𝑖𝑖  is the labor productivity of 



industries i of year T.Countries: Denmark(1995-2007), Czech Republic(1995-2007),  United Kingdom(1995-3007), 
Japan(1995-2009),  United States(1995-2009)  and Netherlands(1995-2007). 
Data source: WIOD Socio-Economic Accounts (SEA) (1995–2009). 
Standard errors in parentheses* p < 0.5, ** p < 0.05, *** p < 0.001 
 
The findings are consistent with the results in Table4, which suggests that the congruence facts 
observed in the US are actually quite general and also true for other countries. 
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